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Preface

This publication contains the presentations made at the Industry-wide

Workshop on Computational Turbulence Modeling, which was hosted by

ICOMP/LeRC, and took place on October 6-7, 1994 at the Ohio Aerospace

Institute. The purpose of the workshop was to initiate the transfer of technol-

ogy developed at Lewis Research Center (LeRC) to industry and to discuss
the current status and the future needs of turbulence models in industrial

CI_D. To address the latter, a total of fourteen presentations were made by

researchers from industry. CMOTT would like to thank all the workshop

speakers for bringing to our attention a host of problems which are impor-

tant to industry and for which they think CMOTT can be of help. We are

prioritizing all the suggestions in order to incorporate them into the CMOTT

work plan.

One unanimous recommendation of the workshop participants was to

make the workshop an annual event. This first workshop grew out of the rec-

ommendations by the peer review committee of the LeRC turbulence mod-

eling program, held in September of 1993. It could have not successfully

transpired without the help and guidance of Dr. Chander Prakash (GE-

Aircraft Engines), Dr. Munir Sindir (RocketDyne), and Dr. Saadat Syed

(Pratt & Whitney), and for this CMOTT would like to thank them.
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TURBULENCE PROGRAM FOR PROPULSION SYSTEMS

Tsan-Hsing Shih

Institute for Computational Mechanics in Propulsion and

Center for Modeling of Turbulence and Transition
NASA Lewis Research Center

Cleveland, Ohio

N95- 27883

BACKGROUND

• CMOTT group at LeRC has been in existence for about 4 years. In the

first 3 years, its main activities were in developing and validating tur-

bulence and combustion models for propulsion systems, in an effort to

remove the deficiencies of the existing models. Two workshops on com-

putational turbulence modeling were held at Lel_C (1991, 1993).

• A peer review of turbulence modeling activities at LeRC was held in

September, 1993. Seven peers (GF,, P_W, RocketDyne, Cornell, Berke-

ley and NASA Ames)conducted the peer review. The objective of the

peer review was to assess the turbulence program at LettC/CMOTT

and to suggest the future direction of turbulence modeling activities for
propulsion systems.

• Important messages from the peer review:

<> '%eRC should spend substantial effort being responsive to indus-

try's current pressing perceived needs; this involves extensive dis-

cussion with industry during every phase of model development,

analysis of industry's problems, goal oriented model development,

evaluation of models relative to industry's intended application
Q*.

b "LeB.C has an obligation not only to respond to industry's re-

quests for help, but to play an autonomous, independent leader-

ship role in providing models of the highest quality, . ,. which can

be employed not only by the aircraft gas turbine and rocket indus-

tries but also by other industries ..?

<>

(>

0

"In the present financial climate, industry does not have the re-

sources to undertake model development and evaluation. LeRC's

help in this regard via the creation of its turbulence modeling ef-

fort, is, therefore, welcome from the industry's standpoint."

"It is important to work with the industry to evaluate the models

and rank-order them by'performance and cost in order to identify

the most appropriate models for particular situations."

Many other useful suggestions and comments including collabora-

tion with industry, joint programs, industry-wide workshop ...



PROGRAM GOALS AT CMOTT

• Develop reliable turbulence (including bypass transition) and combustion

models for complex ]tows in propulsion systems

• Integrate developed models into deliverable CFD tools for propulsion

systems in collaboration with industry.

PROGRAM APPROACH

• Develop turbulence and combustion modules for industry customers

• Industry collaboration and technology transfer

• Model development for propulsion systems

One-point moment closures for non-reacting flows

0 Scalar PDF method for turbulent reacting flows

0 Validation of existing and newly developed models

2



Development of
Turbulence and Combustion Modules

• Objective

Build a quick and efficient vehlc]e for technology transfer to indus-

try

• The features of the turbulence module:

It contains various turbulence models from which users can choose

the appropriate model for flows of interest

It is self-contained, i.e., it contains its own solver for turbulence

model equations

It can be easily linked to industry's CFD codes

• Turbulence module for 1NTARC code has been developed, tested, and is

ready to be released

The models built-in st the present time:

Mixing length, Chien k - e, CMOTT k - _ models

The model to be built-in:

CMOTT algebraic Reynolds stress, Reynolds stress transport

equation models and other models based on the request from in-
dustries.

Q Built-in robust, realizable numerical solver for model equations.

• General turbulence modules

Can be used for both compressible and incompressible flows.

Interface programs for different industry CFD codes

Built-in models will be periodically updated.
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Collaboration with Industry

and Technology Transfer

• Joint reseaxch programs with industry

Preliminary programs with engine companies and others have been

initiated (GE, P&W, RocketDyne, Naval Research Laboratories)

Develop fm'ther joint research programs related to the industry's
projects

• Industry-wide workshops will be a regular program (once every two
years)

Release Lewis turbulence and combustion modules to industries

Discuss the needs of industry

Models developed at CMOTT

i. Isotropic eddy viscosity models

2. Reynolds stress & scalar flux algebraic equation models

3. Second moment transport equation models

4. Multiple-scale models for compressible turbulent flows

5. Bypass transition models

6. PDF models for turbulent reacting flows

PROGRAM SUMMARY

t
r-ru,,,,OL,_,,,c,=_ /,,._o,==,.=,,.o,_.,

f,,O,,,..'
• . i PROGRAMSI

!] _ MODULES ,) _,Maln lndustr_s codes ..J TWORKSHOPI i R Ia. YJ
" f DIRECT APPLICATIONS'_ fNori-rotating p s "_
-_ !N PROPULSION i'_ Combustor problems !<---- ]

<SYSTEMS J _rurbomachlnery J
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Isotropic eddy viscosity models

• Objective

0 To examine the deficiencies of existing models

0 To develop better eddy viscosity models

• Current status of existing k - e eddy viscosity models

2

-u uj = vr(u ,j ÷ uj,0 -  k&j,

Dk _ T(k) ÷ p(k) _ _ ÷ W.C.,
Dt

_2

vT -- Cpfp--

D___= T(,) + p(,) _ D(_) + W.C.
Dt

They are not tensorially invariant due to f_,(y+), W.C.(y +)

Model constants are not consistent for flows with and

without wall

Normal stresses may violate realizability

Do not work very well for flows with pressure gradients

• Development of a Galilean-, tensorially invariant, realizable, k - _ model

New damping function f_(k/Sv) is proposed to remove the depen-

dence on y

New dissipation e equation is introduced to give better

response to pressure gradients

Consistent model coefficients for all flows

Realizability of the normal stresses is guaranteed

Modified wall function for cases with pressure gradients

7



• CMOTT k - _ eddy viscosity model

2
VT = C_]_ k2

Dk

Dt

DE

Dt

= Tk + Pk--s

= T,+Ca/aS _-c2
C2

k+ v"_

(> f_, f_, f¢ are functions of R = k/Sv, which is tensorially invariant

1 which ensures realizability for normal stresses<> C# = Ao+A,U* k/_

0 _ represents the effect of inhomogeneity

]g4

• = b,Vk Vk+hk_vs_Vk+ hvvs vs

• Validation

F1 ows:

Channel flows

(> Boundary layer flows with and without pressure gradients

(> Planar jet, round jet and mixing layer

Backward-facing step flows

(> Complex flows related to industrial applications

Models:

(> Launder-Sharma, Lam-Bremhorst, Chien,

Nagano-Hishida, ...

(> k- w model (Wilcox)

(> CMOTT k - e model

8
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Spreading Rate of Free Shear Flows
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Algebraic Reynolds stress models

• Objective

_> To examine the deficiencies of existing ARS models

To develop better ARS models

• Current status of ARS models

<> Second-order closure based ARS models (Rodi, 1980)

1

Comments:

• Assumption: uiuj/k -- Const., (uiujz_),k = (kui),i -- 0

• Numerical difficulties

0 Pope's explicit ARS model (2-D flows), Taulbee's ARS model (3-

D), Gatski and Speziale's ARS model

0 Other methods: RNG, DIA and invariant theory

12



• General constitutive relations from invariant theory

K 2
2 k61j q- 2a2--(Ui,j q- Uj,,- 2U/,16/J) q- 2a4K--_3ru2" ' q- UJ2,i - 2YI1SiJ)

uiuj : 3 ¢ 6 ¢2 _ :,_ 3

K 3 1ii25ij K32=77(_,_u_,j - !rh6,j)+ 2=_-fi-(_r_,k_rj,k - ) + 3

K4,rr U2 U 2 2-]-[3 _ij)
+ 2_ 7K'W"_U2'_+ tr_trj,_ - 2rr36,j)3+ 2_1o-_-_u_,, _,i+ v_,j _,,- 3

KS {TT2 rr2 K 2 2
+ 2al:-fi-w_,k=_,_ - _@) + 2_13-fi-(uLw_,J- _II4&j)

K s 2

K 7 2
UI,kU_,=, Uj,,. ++ 2a18 ___ (Vl,k 2 2 _f_,k_fl, kV_rnU2rn _'[-[7_ij )

• RDT and realizability constraints (Reynolds, Lumley)

• CMOTT Mgebraic Reynolds stress model

2 2s_j+ 2c_7(-s,'_a_,j + fl_ksT,j)

where

_,, + u_,_ = [(_+ _ )_,_],_- =,=_u_,_- _
_rk

/2t _ E 2

_,, + ui_,i = [(_+ --)_,_],i - c_-_--Wu_,i - c_- z

1 _/1 - 9C_ (-_)2

Ct' = u" k ' C2 :
Ao + A_--;-- Co + 6s.___A_n-____h_

_'t :C_, Ao=6-5, Co=1.0

C_a :1-44, C_2=1.92, _r_ :1, _=1.3
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• Validation

0 Rotating homogeneous shear flows

0 Backward-facing step flows

(_ Confined jets

0 Complex flows related to industrial applications

z
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SWIRLING FLOW

WAI_
t_RGE EDOY SNE_q
IqEGJONK_/E_J J_rs 1.5

Centerl_neVelocity
......... i ......... o......... i ......... ! ........ _"

1.0

0

n- 0.5

0.0

-1

• EXP

..... SKE

RRSAE

_,_0 Oa

00 0"

, ,1]') .... , • .
0 1

U (m/s)

2

x=5.1 cm

•.., ._._ •.,".'..
"x-_"

. ._':

"U
, _-, i , • I • ,

-0.5 0.0 0.5 1.0

V (m/s)

' • ' ' i ' • .' I ' ° ' •

.'_;.... ,
-0.5 0.0 0.5 1.0

W (m/s)

17



Scalar turbulence model

* Objective

To improve the predictive capability of current scalar

turbulence (0 2 - e0) models

Q A new scalar flux constitutive relation

A new scalar dissipation rate model equation

u--_-e= - CA_(2)1/2e,, + _ (!)l/2(a2U_,j + =3Uj,,)O,_

U O_ _raT-_ ._ nO0
--_ o't v ,: ,,j - 2u_e-5-_x_ - 2co

o_j =(_e,j),_ + Cel_eS+ _e_V_or - co3T

CA = (2 + 2r + 0.5r 2)
26 + 3.2y 2 + 2_2

Cel = C1 - 0.13, Cs_ = 0.63,

kf k _1/2S. , 2_ _

Ce3=C2-1, _t=l.0, a_=1.8

18
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• Validation

Q Homogeneous turbulence subjected to O®/Oy

Homogeneous turbulence subjected to OU/Oy, O®/Oy

Flat plate boundary layer with constant surface

temperature

• Work in progress

Model assessment for different scalar boundary conditions

Model extension for integration to the wall
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Second Order Closure Models

2

Dt

Objective

To assess existing models

To find the direction of improving closure models

• Basic model forms

= F,s(&s,

-[Return

• General comments on second order closures:

The model, I_.j _pia, is relatively well developed compared with
other terms

The model, I_._eturn, is least developed

A Galilean and tensorially invariant second order closure model

has not been well developed yet

(_ All models have large errors near the wall, especially in the buffer

layer; therefore, for engineering application, the wall function ap-

proach is suggested at the present time

21



• Application of realizabili_y _o IP and LRR models
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Multiple scale k-_ model

• Objective:

To consider the effect of a non-equilibrium energy

spectrum on eddy viscosity for compressible turbulence

• Approach:

0 Use multiple scale concept introduced by

[] Large-Scale

_-b7 = N [(_+ -- + #_'( --- + fc_% -N-vt _) p_,

_D_=p__..._y[(_.+ E)___.y]#T O_ + C p l _ . T ( -_ >%"Ou "2 -- C p2 -fi_ + fc_

• fci - exchanges between the turbulent kinetic energy and internal energy

• fc2 - increased spectral energy transfer due to compressibility effects

[] Small Scale

_-ff/-= N [(_+ _)W' +_' - _

PN = [(g+E ) OY_ .+Ctl-_e_-Ct2-_-kt

[] Eddy Viscosity

- , + kt)_

ep
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Model Evaluation

Turbulent Shear Flow

TURBULENT FREE $H_ LAYER
TURBULENT BOUNOARYLAYER

Shock/Turbulent-Boundary-Layer Interactions
<> transonic flow
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Flow over a Bump Bachalo and Johnson (1979)
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Bypass transition models

• Objective:

(_ Develop transition models for flows with tree stream

turbulence

• Approach:

(> Using K-¢ model as the base model

(> Introduce effective intermittency to either the eddy

viscosity or the k-e model equations
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PDF modeling of turbulent reacting flows

• Objective:

Develop models that can accurately simulate finite chemical reac-

tions in turbulent flows.

Develop and validate independent PDF models.

Technology transfer.

• Approach:

Joint pdf for scalar compositions.

Moment closure schemes for velocity field.

Develop hybrid solver consisting of Monte Carlo method and

finite-difference/finite-volume method.

Without PDF Method

x

With PDF Method. (C_O"_"]')
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TURBULENCE MODEL DEVELOPMENT AND APPLICATION AT

LOCKHEED FORT WORTH COMPANY

Brian R. Smith

CFD Group
Lockheed Fort Worth Company

Fort Worth, Texas

N95- 27884

Broad Range of Flow Problems of Interest

Wide Rangeof FlowConditions:

Subsonic- Hypersonic

Internal- External- StoreSeparation

Cruise- HighAngleofAttack

Rowsphenomenaof Interest:
Inlets/Diffusers

Streamwlae Curvature

ShoddBL InteracUons

Rectangular Duct _ Circular

Nozzles
Entrainment

Rotmd_ Rectangular Duct

High Speed Shear Layers

ExternalAerodynamics
Vortex

Leading Edge Separation

ShoddBL Interactions

Leading Edge Separation - Cowl Ups

Separation Induced Unslart

Film cooling, liners, Vanes

Swirl

30 Boundary Layers

Wakes

The CFD Environment at Lockheed Fort Worth Company

Mostcodesdevelopedorhighlymodifiedin house

General gridgenerationandsolversfor diverseapplications

Structured andunstructuredsolvers

Computationalefficiencyimportant

• Complexgeometries,manygddpoints

• Large arraysof flowconditions

29
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Requirements for Turbulence Models

Turbulence Modeling Prlodtles for Industrial Application

• Validation

High accuracy for attached flows

Reasonable accuracy for all flows

High confidence level

• Computational efficiency

• Robust for complex geometries

• Transitional modeling capablility

To obtain acceptable accuracy, propulsion flows demand more sophisticated
turbulence models than do external aerodynamic flows

The k - kl and k - I Two Equation Turbulence Models

Advantages of using kl or I instead of ¢or co

kl and I equations are easier to resolve numerically than s equation

Dissipation Length Scale is an integral length scale

•Can derive equation for volume Integral of two point correlation function.

•Theoretical ¢ equation is dominated by small scales

k - kl and k - I agree better with compressible boundary layer data than
does k-s

Disadvantage - current formulation requires calculation of distance to walls

k - kl model

• Includes unique, consistentwall
function

• Accurate for transonic flows

k - I model

• Derived from k - kl model - identical in
high Re turbulence

• Near wall model simulates k In viscous
sublayer
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The k - kl ModelWall Function

Wall layer model derived from and consistent with the k - kl model

• Assume convection In momentum, energy and turbulent kinetic energy
equations to be negligible

• Boundary layer approximation

Match velocity, k and I at first grid point in Navier - Stokes solution

First grid point can be in viscous sublayer, buffer or logarithmic region

Boundary conditions on k and I simple for k - kl model

Advantages of wail functions

• Reduces number of necessary grid points

• Reduces number of iterations to converge steady state solution 60 - 90%

Wall Functions are Accurate for Separated Flow Applications

Axlsymmetdc Bump, Transonic Flow Experiment

Cp

0.5 0.75 1.0 1.25 "' " :1.5

x/c

Velocity profiles with and without wall functions

_ u OJ_P a XJC w 0.111

I)'024 "1:0 ,0" 0.4 1:0

U/U
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The k - i Model with Near Wall Model

kl equation is transformed exactly to an I equation

Advantages of k - I formulation

• I is linear near wail, KI nonlinear and very small

• Near wall damping terms disappear

• Production term drops out with current choice of constants

k-lmodelincludes; " _ _ .

• Transitional flow modeling

• Compressibility corrections

Modeling of details of k profile near wall important for hypersonic flows

• Magnitude of normal stress term comparable to static pressure

• Near wall density variations large

! Equation Much Easier to Resolve than _ Equation

E equation requires fine gdd from wall to y+ of 20 to resolve peak

•Exclusion of near wall viscous dissipation term aggravates problem

•Logadthmlc region, c =<1/y

I equation is nearly linear near wall. much less sensitive to grid resolution
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Resolution Study with k - _ and k - ! Models
k - e with Launder - Sharma k - ¢ with Lain - Bremhorst

16

14
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": IIIIIli _* ....
20 : : :::

,, iillili

o-_'_ FIilill
, , ,.,i,

10' !o_

k . I Model
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symbol Numberof Stretching Y'_,flrst
Grid Rate grid point

Points from waJ!

151 1.04 0.033

Q 11 1.4 4.3

O 11 1.8 1.65

ZI 11 1.8 0.67

_> 11 f,,g 0.44

Sample Applications:

Mach 8 Shock Wave Turbulent Boundary Layer Interactions

F-16 Inlet Derivitive, Isolated Duct Study

Multi-slot Ejector

Fl10 Nozzle Drag Reduction Study

33



k - I ModelWith CompressibilityCorrectiongives BestPrediction
For Mach8 ShockBoundaryLayerInteraction
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The k - I Model Predicts Turbulent Shock - Wave Boundary
Layer Interaction Well
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Afterbody/Nozzie Pressure Distributions Match Test Data
Mach 0.6
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Good Predictions of Multi - Slot Ejector Obtained with
k - ki Model
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Summary

ComputaUonally efficient k - I and k - kl models have been developed
and implemented at Lockheed Fort Worth Company

Many years of experience applying two equation turbulence models to
complex 3D flows for design and analysis
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A SUMMARY OF COMPUTATIONAL EXPERIENCE AT GE AIRCRAFT ENGINES FOR

COMPLEX TURBULENT FLOWS IN GAS TURBINES

R. Zerkle and C. Prakash

GE Aircraft Engines

Cincinnati, Ohio

N95- 27885

CONTENTS:

• INTRODUCTION

• 2-D BOUNDARY LAYER CODE WITH LRN TURBULENCE MODEL

• 3-D NAVIER-STOKES CODE WITH WALL FUNCTIONS

• 3-D NAVIER-STOKES CODE WITH LRN TURBULENCE MODEL

• FILM COOLING SIMULATION

• TURBULATED PASSAGE SIMULATION

• OVERALL CONCLUSIONS

• LIST OF REFERENCES

INTRODUCTION:

• Indications are that the standard k-_ turbulence model together with
standard wall functions are adequate for CFD simulations in cavities

away from the primary gaspath of a gas turbine engine.

• However, CFD simulations in the primary gaspath and in blade cooling
passages require more advanced turbulence models.

• Therefore, this presentation will summarize some CFD experience at
GEAE only for flows in the primary gaspath of a gas turbine engine and
in turbine blade cooling passages.
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2-D BOUNDARY LAYER CODE WITH LOW REYNOLDS

NUMBER (LRN) TURBULENCE MODEl •

• The STAN5 B.L. code was modified to include the LRN k-E turbulence

model of I_am & Bremhorst as described by Zerkle & Lounsbury [1].

• Includes the following near-wall effects:

- High freestream turbulence

- Axial pressure gradient
- Onset of transition

- Relaminarization

- Wall roughness
- Wall curvature

• Used to compute heat transfer coefficient distributions on turbine airfoil
external surfaces.

• Primary limitation:

- It's a 2-D code in a 3-D environment.

3-D NAVIER-STOKES CODE WITH WALL FUNCTION_:

• Time- marching finite-volume formulation ofthe Reynolds - averaged
Navier-Stokes equations as described by Turner & Jennions [2,3].

• Includes:

- Explicit Runga-Kutta flow solver

- Implicit formulation of the standard k-E turbulence model

- Standard wall functions

- Transonic flow effects

• Used to simulate high speed flows in turbomachinery passages.

• Limitations:

- Lacks near-wall physics of the 2-D boundary layer code.

- Forexample, lack of boundary layer transition leads to overprediction
of loss for some turbomachinery airfoil passages containing signifi-
cant regions of transitional flow.
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3-D NAVIER-STOKES CODE WITH LOW REYNOLDS

NUMBER (LRN) TURBULENCE MODEL:

• The LRN k-Eturbulence model of I_am & Bremhorst was implementec
inthe 3-D Navier-Stokes code as described by Dailey, Jennions ant

Orkwis [4].

• Addition of the LRN turbulence model improved the prediction of los.'
for transitional flows.

• Primary limitation:

- The need for a very fine grid in the near-wall region leads to exces
sive run times which renders the code impractical for design applica
tions at this time.

FILM COOLING SIMULATION:

• Film cooling at the surface of an HP turbine airfoil is crucial to its life.

• Improvement of the film cooling process would significantly improve
turbine performance by reducing the need for cooling air flow.

• CFD simulation could facilitate film cooling development by reducing
the need for expensive cascade testing and, more importantly, by giv-
ing greater insight into the associated flow physics.

• A CFD simulation of film-cooling tests, which were carried out at the
Univ. of Texas by Professors Crawford & Bogard, and their students, is
described by Leylek & Zerkle [5].

• These tests are of special interest because the ranges of film cooling
parameters are consistent with those typically found in gas turbine air-
foil applications.

• Theobjectivewastovalidate a CFD model of film cooling bycomparing
numerical and experimental results.
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FILM COOLING SIMULATION (CONT'D):

• The model includes:

A 3-D, fully-elliptic, Navier'St0kes solution of the coupled flow in
the plenum, film hole, and cross-stream regions.

An exact representation of the inclined, round, film-hole geometry
using a highly-orthogonalized fine grid mesh.

The standard k-_ turbulence model with standard w,_ll functions.

FILM COOLING SIMULATION (CONT'D): P

z

Essential featu='es of experimen_l film cooling

conligutafion showing overall ex¢ent of computa-

tion domain and coordinate system
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FILM COOLING SIMULATION (CONT'D):

S,,_t et J. tl )_1o)
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Figure 14. Lateral variation of ad_aba_c effectiveness hom
computa_ons and experiments for M=0.5 at five
sVeamwise stations.

FILM COOLING SIMULATION (CONT'D):

• Summary of Results:

- The flowfield is dominated by a strong three-way coupling between
the plenum, film-hole, and cross-stream regions.

- Flow within the film hole is extremely complex, with counter-rotating
vortices and local jetting effects.

- A comparison of computed and experimental film effectiveness on
the plate surface indicates that the simulated coolant jet is not spread-
ing as fast as experimental results.

• Conclusions:

- There is excellent qualitative agreement between the numerical and
experimental results.

- However, the lack of lateral spreading of the coolant is caused bythe
inability of the k-_ turbulence model to cope with non-uniform rates
of diffusion in different directions.

- Improved accuracy requires an anisotropic turbulence model.
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TURBULATED PASSAGE SIMULATION:

• Modern high-performance turbine blades are cooled by internal
radially-rotating serpentine passages.

• The airflowing throughthese passages is exposed to very large Coriolis
and centripetal body forces which induce strong secondary flows and
buoyant effects.

• These effects tend to increase heat transfer coefficient on the trailing
• .. . •

face of an up-pass, :but decrease it on the leading face.

• Turbulators are added to the passage walls in order to enhance their
cooling effectiveness.

• The primary objective of blade cooling development is to determine tur-
bulator and passage configurations which can influence the secondary
flows to achieve a uniformily high heat transfer coefficient, but within
pressure-drop constraints.

• Rotating-passage rig tests are expensive, and it is very difficult to
a_chievehigh-quality data in the range of engine operating parameters.

TURBULATE-D PASSAGE SIMULATION (CONT'D):

• Therefore, CFD could facilitate blade cooling development by simulat-
ing new cooling configurations at real engine operating conditions.

• An exploratoryinvestigation of CFD simulation in turbulated blade cool-
ing passages is described by Prakash & Zerkle [6].

• Conclusions are:

- The flow fields in turbulated blade cooling passages are very com-
plex, and desired accuracy requires advanced turbulence models.

- An LRN model is needed near turbulated walls in the case of low pas-

sage Reynolds number. ..... .

- An anisotropicturbulent model is needed in the case of large block-
age ratio (rib height to passage diameter).

- Practical LRN and anisotropic models are not yet available.
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OVERALL CONCLUSIONS:

• Application of the standard k-_ turbulence model with wall function
is not adequate for accurate CFD simulation of aerodynamic perfor
mance and heat transfer in the primary gas path of a gas turbine engine

• New models are required in the near-wail region which include mot,
physics than wall functions. The two-layer modeling approach ap
pears attractive because of its computational economy.

• In addition, improved CFD simulation of film cooling and turbine blad
internal cooling passages will require anisotropic turbulence model.,

• New turbulence models must be practical in order to have a significar
impact on the enginedesign Process.

• A coordinated turbulence modeling effort between NASA center
would be beneficial to the gas turbine industry.
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THE APPLICABILITY OF TURBULENCE MODELS TO AERODYNAMIC AND PROPULSION

FLOWFIELDS AT McDONNELL DOUGLAS AEROSPACE

Linda D. Kral, John A. Ladd, and Mori Mani

McDonnell Douglas Aerospace
St. Louis, Missouri

N95- 27886

Objective

• Evaluate turbulence models for integrated aircraft components

such as the forebody, wing, inlet, diffuser, nozzle, and afterbody

Approach

• Integrate turbulence models into existing Navier-Stokes program

maintaining zon£1 philosophy

• Introduce corrections to baseline turbulence models to account

for additional affects such as compressibility or separation

• Develop algorithmic improvements for better numerical stability

and robustness

• Compare the strengths and weaknesses of turbulence models

• Determine applicability of algebraic, one-equation, and twcy-equation

turbulence models for typical complex flows and geometries
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Turbulence Modeling Capabilities

• Algebraic Models

-Cebeci-Smith boundary layer model

-Baldwin-Lomax boundary layer model

- P. D. Thomas shear layer model

• One-Equation Models

- Baldwin-Barth

- Spalart-Allmaras

• Two-Equation Models

- High Reynolds number k - e

-Low Reynolds number k- e (Jones-Launder, Speziale, Chien,

Lam-Bremhorst, So, and Huazlg-Coakley)

- Wilcox k - w

- Menter baseline and shear-stress transport blended k - w/k - e

Navier-Stokes Time-Dependent Algorithm
NASTD

• Euler/Navier-Stokes Equations

- Laminar or Turbulent

- Ideal Gas, Thermally Perfect Air, Equilibrium or Nonequillbrium Chemistry

• Finite Volume Formulation

- Roe and Coaldey Flux DifTerence Split Schemes, Optional TVD Schemes

• Solution Update Procedure

- Approximate Factorization

- Runge-Kutta Time Stepping

- Iterative Space Marching (PNS)

• Geometric Capabilities/Generalizations

- Zonal Capabilities and Flexible Boundary Conditions

- Grid Sequencing

- Overlapping Grids

• Turbulence Models

- Cebeci-Smith, Baldwin-Lomax and P. D. Thomas Algebraic Models

- Baldwin-Barth and Spalart AUmaras One-Equation Models

- Six Low Reynolds Number k - e Models

- k - w and Menter blended k - ,_/k - e Models

E
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Selected Applications

• Transonic Supercritical Airfoil

• Three-Element High-Lift System

• Single Slot 2-D Ejector Nozzle

• Confluent Mixer

• Highly Offset 3-D Diffuser

Modifications to Production Term

Default calculation of production:

Pk = Re L2kOxj÷ Ox, J - 3kOxe/ ] --3fik-5-_zk

Vorticity used in production:

Production limiter used:

P_ = min(Pk, 20Dk) = min(Pk, 20 c2 p k Re)
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Effect of Production Limiter for the Chien k-_ Model

RAE Airfoil Analysis, Turbulent Viscosity Contours

Mac.h = 0.725, a = 2.55 deg., Re = 6.5 Million
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RAE Airfoil Analysis, Mach Contours

Mach = 0.725, a =2.55 deg., Re = 6.5 Million
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NASTD Solutionof MDA Three-Element High-Lift System

M-0.2, AOA= 1_21
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NASTD Solution of MDA Three-Element High-Lift System

M =0.2, AOA • 16.21 Ba.ldw/n-Barth

o.o 300o 8ooo 9OOO

More Accurate Solutions Have Been Obtained With One-Equation Spalart-
AIImaras Turbulence Model
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Four-Zone Grid for an Ejector Nozzle

Primary Nozzle
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Symmetry Plane II)K

Single Slot Ejector Analysis
NPR=14., PtslPtp=.34

Mach Number Contours from Several Turbulence Models
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Single Slot Ejector Analysis
NPR=14., PtMPtp=.34

Eddy Viscosity from Several Turbulence Models

Single-Slot Ejector Nozzle Analysis

NPR -- 14, Pts/Pt_ = 0.34

_t/_I _- 100

Comparison of Predicted Ejector Flow Rates

Model

Experiment

Thomas/Baldwin-Lomax

Baldwin-Barth
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Jones-Launder k - e

Speziale k - E
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Huang-CoakIey k - e

W,/Wp
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0.1146
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0.1126
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% Error
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Single Slot Ejector Nozzle

Surface Static Pressure Comparison with Experimental Data

NPR = 14.0, Pt,/Ptp = 0.34
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Offset Diffuser Analysis
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Offset Diffuser Analysis

Ae/At=l.6, LfD-4.5, Design Pressure Ratio

Comparison of Engine Face Total Pressures
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Offset Diffuser Analysis

Lower Centerline Surface Static Pressure

Ae/At = 1.6, LID = 4.5, Design Pressure Ratio
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Offset Diffuser Analysis

Upper Centerline Surface Static Pressure
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Three-Dimensional Highly Offset Diffuser

Ae/At = 1.6, LID = 4.5, Design Pressure Ratio

Comparison o[ Engine Face Parameters

Model
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P,.gl P,®
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Centerline Eddy Viscosity Contours
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Comparison of Throat Total Temperatures
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GE Slot Cooled Nozzle, Confluent Mixer

Surface Temperature Distributions,

TGX = (Tj - TI_,)/(TIh_ - Tr.u)

Top Surface, BL=0.5
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Summary of Turbulence Modeling
at McDonnell Dougalas Aerospace

* The one-equation models have replaced the algebraic models as the

baseline turbulence models.

• The Spalart-Allmaras one-equation model consistently performs bet-

ter than the Baldwin-Barth model, particularly in the log-layer and

free shear layers. Also, the Spalart-Allmaras model in not grid de-

pendent like the Baldwin-Barth model.

• No general turbulence model exists for all engineering applications.

• The Spalart-Allmaras one-equation model and the Chien k -e mod-

els are the preferred turbulence models.

• Although the two-equation models often better predict the flowfield,

they may take from two to five times the CPU time.

• Future directions are in further benchmarking the Menter blended

k - oJ/k - _ and algorithmic improvements to reduce CPU time of

two-equation model.
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EXPERIENCE WITH k-e TURBULENCE MODELS FOR HEAT TRANSFER

COMPUTATIONS IN ROTATING N95- 27887

Prabhat Te]rd'i_wa]

GE Corporate Research and Development
Schenectady, New York

OUTLINE

• Geometry and flow configuration

• Effect of y+ on heat transfer computations

• Standard and Extended k-E turbulence model results with wall

function

• Low-Re model results (the Lam-Bremhorst model without wall

function)

• A criterion for flow reversal in a radially rotating square duct

• Summary
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TWO-EQUATION TLIRBIILENCE MODELS

)it= fltCl,P k':-/E

D_ = ;)'x_"I'rk_,-i)+ P((;k-¢)

,3

"-Dr = _ (Ir_ Oxi +fl )_. pOk-hC2p=_=. + C3p-_-

where Gk = El- .()ui _j) ¢5ui_, (_j + ;_,i _i; c), = 0.09

Standard k-E model:
Prk = 1.0, PrE_=I.3, C1=1.44, C2=1.92, C3=0.0, ft=1.0, f2=1.0, and fl.L=1.0

Extended k-8 model:

Prk = 0.89, PrE=l.15, C1=1.15, C2=1.9, C3=0.25, ft=l.0, 12--->!.0, and It==1.0

Lam-Bremhorst low-Re model:

Prk = 1.0, PrE---1.3, C1=1.44, C2=1.92, C3=0.0, f1=(1 +0.05/ftl) 3, f2=1-e -R2,

and flZ=(1-e "0"0165Rk)2 (1+20.5/FIt), where Rk=k 1/2 y p/it and Rt=k 2 P/It 8
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Fig. 2(a}-Eflecl of y+ and grid size on Nu computation
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Table I Prediclion of Flow Reversal Near Ihe Leading Wall

AT/['w R/d Re Gr/Rc2 Flow Reversal ?

0.07
0.13
0.23
0.36
0.48

0(17

0.07

0.13
0.16
0,23

0.07
0.13
0.23

49

196
3110

33
49

196
300

49

25(XX)

25OOO

12500

0.05
0.09
0.16
0.26
0.34

0.211
0.3[)

i..
O.13
o.2n
11.77
1.18

0.36
0.45
0.65

0.20
0.36
0.65

No
No
No
No
Yc_

No
y,,¢

No
No
Y_
Yes

Yes
Yes
Yes

No
Yes
Yes

0.13 49 250(10 0.73 Yes
0.16 0.91 Yes
0.23 1.30 Yes

O. 13 49 2.51100 1.45 Yes

SUMMARY

1. Near-wall grid size has a significant effect on the heat transfer calculations
when the "wall function" treatment is used. Numerical experiment on the data
of Morris et al. (1991) suggests that a y+ value in the range of 12 to 42 or so
yields more accurate results.

2. The extended k-E turbulence model, while yielding heat transfer results virtually
the same as those of standard k-_ model for low rotation-number flows,

rovides an improvement over the standard k-_ model by up to 15% or so in
eat transfer predictions for high rotation number flows.

3. Wall-function k-E models predict lower (than data) heat transfer at the trailing
wall and higher at the leading wall. The need to properly represent the effect of
rotation in the k-E model equations is realized.

4. The low-Reynolds number model utilizes a large number of cells and the
convergence rate is very slow in comparison to the high-Reynolds number
model using wall function. It is difficult and expenswe to obtain a well
converged solution with the low-Re turbulence model
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5. Thepooragreementofthelow-Remodelresultswiththedatamakesthe low-
Remodelasanunattractivechoicefor heattransfercomputationsin rotating
radial outwardflowat high Rotationnumber(> 0.24)and high-Reynolds
number(25000).

6. The extendedversion of high-Reynoldsnumber turbulence model in
conjunctionwithwall functionyields satisfactoryresults for flows with
isothermal walls as well as uneven walt temperatures. The agreement is within
5-25% of the data with uneven wall temperatures for flows at Reynolds
numbers 10000 or higher.

7. For flows at Reynolds number 5000 or lower, the low-Re model predictions are
better, especially for the case of uneven wall temperature conditions.

8. The centrifugal buoyancy may cause a flow reversal near the leading wall
depending upon the geometry and flow parameters such as rotation number,
temperature ratio, mean radius ratio and Reynolds number. For the square-
section channel considered here, a criterion of Bo=Gr/Re _' higher than 0.3 is
predicted to cause flow reversal near the leading wall for flows at Reynolds
number up to 25000.
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• Gas Turbine Combustor Flow Physics

* Turbulence Model Investigations

. Turbulent Combustion Modeling

• Present Status and Future Needs

GT COMBUSTOR FLOW PHYSICS

• Key issue is flame stabilization by means of recirculatlng flow
of hot gases and chemically-active species to ensure continuous

ignition of fresh reactants.

• Three main mechanisms: 1) axial swirling air jet associated with

each fuel introduction; 2) sudden expansion of axial swirling
jets; 3) blockage due to radial air jets downstream of fuel sources.
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TURBULENCE MODELS SURVEYED

• Following models or modifications have been tested at P_zW /
UTRC using RANS solvers on building block flows:

1. low-Re models (complex ducts);

2. RSTM or SMC (complex ducts, swirling and non-swirling
dump combustor);

3. RNG (pipe, backstep, 180 deg duct);

4. two-layer near-wall model (internal flows, heat transfer);

5. realizable algebraic stress model (swirling dump combustor);

6. compressible turbulence (shear layers, compression corner)

7. steady vs. unsteady-state solver (bluff-body, compression
corner)

• Major diificulty occurs with swirling flows, and failure to predict
downstream velocity components.

SWIRLING FLOWS

1"

Ro

• Benchmark-quality data set provided by Johnson-Roback
co-annular combustor with swirl:

_._ f.'-_. _ f __ ___:_

_',_1' _ 1 _ .....

X; 10.2 em

-H -o, eo ii ** ii il -oJ -o, i _ ,i

U, m/see V, m/see

I 't r_ : ] t
l0 I * "* ,z ,s I

W, m/see

• Poor agreement of CFD and data highlights need for improved

upstream BC specification (swirler geometry), 3-D, unsteady
analysis. Even SMC models fail to reproduce downstream
velocity profiles.
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UNSTEADINESS AND FLOW FIELD RESOLUTION

• RANS solvers can predict flow coherence (vortex shedding)

when run in an unsteady mode with small At.

• Same flow field computed in steady-state sense gives completely

unusable results.

• Example: V-gutter flow, computed by Durbin (1994):

_[_y..STAI_ COIdI_ATIOH

• i
3.4

Uo-! _
'_-3 It

Ratioof characteristic
frequences(estimated)

fr = 225
fo

UNSTEADINESS AND FLOW FIELD RESOLUTION

• RANS solvers cannot predict flow oscillations at frequencies

near characteristic turbulence frequency.

• Example: Unsteady comp. comer flow of Dolling and Or (1983):

rj_) kty) Frequency ratio:

-- xs xo

_,-l.ll_lkl. 1_ - 1.711X106

• Separation bubble oscillations (at resonant frequency) not

resolved by RANS solver.

• Limitations of steady-state and unsteady-state RANS solvers set

by flow characteristic time scales.
True timeaccurate solvers (LES, DNS) needed for prediction

of all relevant phenomena
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TURBULENT COMBUSTION MODELING

• Eddy Dissipation Concept Model, together with reaction exclusion regions, capable
of prediction gross flow features at near LBO conditions (Sturgess et al., 94-GT-433)

- !
,i.U 

Near-field flow featnr_

Reaction exclusion regions

i-_ . ::

_i_-" '.:I:

EBU-model Temperature field

._.__

EDC-model Temperature field

• EDC model, however, fails to predict flame attachment at rich conditions

TURBULENT COMBUSTION MODELING

• Assumed-Pdf method of Girimaji (LaRC Workshop, 1991) used with

non-equilibrium kinetics model.

Train= ma,x(T- ¢ _, Ylow)
Kftur b _¢ k/(T) P(T) dT

KfLam k/(7 _) T,_ = min (7_ + ¢ @, Thiah)

KF _L ....................... --/ _--:-_= ....
.... :: :: ...... ::: Y---_._,_=,-7-:

'" I:--- 222.5 _ ............. ...-.a--::_. .........

Temp, °R "--"

__acreasin6 • _-:: :::=-=i_:::

:::: :::: ::::l':::

_-[_-7q.-.__:':[_-:_--_:.-_i, increasing TT i_

Temp, °R --"

• Example: N + 02 _ NO + 0 in extended Zeldovich model

• Results dependent on TLow, THigh, q_, modeling of ffh transport equation, etc.

* More testing needed

83



PRESENT STATUS OF COMBUSTOR MODELING

• Corsair (Ryder, P&W) unstructured, unsteady flow solver

Teml_ratum I'_

"i/
Dmoi

itm,

• Example: Time-dependent combustor flow using engineering

boundary conditions, compressor exit to turbine inlet

• Code currently includes standard k-e and EBU combustion

model. Additional capabilities being added under "Subsonic

Emissions and Combustor Design Code" program with NASA LeRC.

PRESENT STATUS OF COMBUSTOR MODELING

• Example: Structured flow solver solution of Task 200
LBO Research Combustor:

Temperature

300.0 1275.0 22_.0 3225.0 4200.0

• k-e turbulence model

• EBU combustion model for propane fuel

• 285,000 elements
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PRESENT STATUS OF COMBUSTOR MODELING

• Example: Unstructured flow solver solution of Task 200
LBO Research Combustor:

_.DClW ¢_134111_

[_QR_IR PR_ll411_rf R_ULTS

• k-_ turbulence model

• EBU combustion model for propane fuel

• Approx. 300,000 elements

a7.3

_.0

23.2

TURBULENCE RESEARCH NEEDS

• Modelling: Applications / validations of currently available

combustion models (13-pdf, Monte Carlo pdf, laminar flamelet)

to complex combustor geometry with jet fuel kinetics.

• Flow Physics: Accurate numerical description of mechanisms
responsible for flame holding, local extinction (LES, DNS);
contrast cold flows with heat release flows.

AIR _,

FUEL ._--_,..

AIR _--_-

J_ Fuel escaping through

Entrainment of unburned fuel

in the re.circulation region
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COMBUSTIONSYSTEMCFDMODELINGAT GEAIRCRAFTENGINES
N-95-27889--

D. Burrus and H. Mongia

GE Aircraft Engines
Cincinnati, Ohio

and

A. Tolpadi, S. Correa, and M. Braaten
GE Corporate Research and Development

Schenectady, New York

CURRENT COMBUSTION SYSTEM CFD MODELING CAPABILITIES AT GEAE
PROVIDED BY THE CONCERT CODE

KEY FEATURES INCLUDE;

FINITE VOLUME, PRESSURE CORRECTION FORMULATION

SECOND ORDER ACCURATE QUICK NUMERICS

SINGLE STRUCTURED BODYFITYED GRID

CONVENTIONAL K-E TURBULENCE MODEL WITH LOG WALL FUNCTIONS

AVAILABLE COMBUSTION MODELS INCLUDE;

SINGLE SCALAR PRESUMED SHAPE PDF (FAST CHEMISTRY)
TWO SCALAR PRESUMED SHAPE PDF (REACTION PROGRESS VARIABLE)

TWO STEP EDDY BREAKUP (ARRHENIUS KINETICS)

ZELDOVICH THERMAL NOx MECHANISM (FORWARD AND REVERSE REACTIONS)

BOTH 2D/AXISYMMETRIC AND FULLY 3E VERSIONS AVAILABLE AND IN DAY TO DAY

USE
CURRENTLY HAVE A USER BASE OF OVER 20ENGINEERS AT GEAE AND GF_.-CRD

TYPICALLY APPLIED TO PREDICT COMBUSTOR PERFORMANCE INCLUDING;

EMISSIONS (CO, HC, AND THERMAL NOx), COMBUSTION EFFICIENCY
EXIT GAS TEMPERATURE RADIAL PROFILE AND PATTERN

GENERAL FLOW FIELD CHARACTERISTICS
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CONCERT DEVELOPMENT HISTORY

EFFORT INITIATED IN 1983

INITIAL PRODUCTION VERSION RELEASED TO GEAE USERS IN 1987

FOCUSED TO PROVIDE HIGHLY PRODUCTTVE ENGINEERING ANALYSIS CAPABILITIES

.GRID GENERATION OFrlMIZED FOR THE SPECIFIC GEOMETRY FEATURF_ OFTHE GAS TURBINE
COMBUSTOR

• - INCLUDES ROUND DILUTION HOLES, S_ DISCHA_G'E, AND LINER SLOT FEATURES
WFI'H_ THE GRID

- EASY INTRODUCTION OF _AL BODIES OF COMPLEX GF..OMETKY

- WOP, X_A'nON BASra) _ FRmNDLY P_ AND Pos'r Pe, oc_sn_ I_ONC-nONS SUILT AROUND

"n-m sO LV_

- SOLVER. HIGHLY OPTIMIZED FOR THE GF.AE CRAY Co90 COMPUTER

7FPIC_ JD MODEL OF ,4 COMB_TOR UTl_ A M_H OF-I_,_ POIN'_ C4N BE GF.NE3M 7F.D, RUN, AND PO_T
I_OCESSE2) MTrHIN A SINGI.EWORKING DA F I

HAS UNDERGONE CONTINUAL DEVELOPMENT TO IMPROVE AND ENHANCE MODELING

CAPABILrTIES

° CLrRRENTLY ON VI_.SrON 3 REL,EASE_

CO_C_CrDNObr_VGeA_E_O_O_D_aW_C_ wrmA_ rI_EFr_C_V_S
tool _r py__ccesDn,_v_._ oNco_ rco_oo_rr _ r_r_v_

COMBUSTION SYSTEM CFD MODELING IN ACTION AT GEAE

PRIMARY--..

_'W1RLF..R

_/SPRAY MODELING

"REC_CULATION s'rR.EN_
"PLOW _ C18AItACTERI.._TICS
• SPRAY DROPL.Er _RIES
"_ FOR 3D COMBUSTOR MOD _.

" :'1 :::':_-'::.:'.:L;I;_H

:i,l ItI_UUIIililULLUaM
_o_ !'_-i':':_ii"i!!iiii_i_iii_h_h

COMBUSTOR MODELING

* FLOW FIELD CHARACTERIS_ CS_41X1NG

"GAS _TURES AND PA_
* EMISSIONS_FFICI_CY

BL_._) AIR
q

BLEED AIR

DIFFUSER FLOW MODEI_G

"Ps RECOVERE_ AND 1_ LOSSES
* FLOW F'J_LDClIAR_CS

\ I[1 , ....

AUGMENTOR MODELING

* FLOW FIELD CHARACTERISTICS_MIXING

. GA_ TEMPERATURES AND PATrF_R_$
• EI_ICII_/CY

z

z

z

g
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MODELING APPLIED FOR DESIGNING ENGINE COMBUSTION SYSTEMS

PRODUCTION ENGINES DEMONSTRATOR ENGINES ADVANCED ENGINES

CFM$6-SB DUAL ANNULAR

GEg0

CF6..450C LOW EMISSIONS

LM1600 DLE

LM2500 DLE

LM6000 DLE

YFI20

FI20

XTE4$ IHPTET PHASE I DEMO

XIF.A6 mFrET PHASE 1IDEMO

A/F-X

NASA]GE HSCT

NASA ASI pRELIMARY CONCEPTS

DOE/GE ATS

MODELING APPLIED TO IMPROVE FUNDAMENTAL UNDERSTANDING

CFM56-3 AND CFM$6--SB NOx EMISSIONS CHARACTERISTICS DIFFERENCES

CFM$6--$A EXIT GAS TEMPERATURE PROFILE SHIFt

FI20 PATTERN FACTOR AND RADIAL PROFILE IMPROVEMENT

LM2$00 CO EMISSIONS REDUCTION EFFORT

CF34 LI_IER COOLING MOD IMPACT ON CO EMISSIONS

FIIOX AUGMENTOR MIXER, SPRAYBAR, FLAMEHOLDER INTERACTION OPTIMIZATION

FI10--400 AUGMENTOR EXHAUST DUCT LINER FAILURE AND FIX INVESTIGATION
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CONCERT3D RESULTS FOR CURRENT PRODUCTION COMBUSTORS

:1
,,r 80

i] ,o J

10

0
0 100200300400500800700

Engineixessuto,Psi

7O

P

J"
0 I00 200 300 400 SO0 600 700

Engine pressure, psJ

CONCERT3D MODEL OF NASA/GE E3 COMBUSTOR

DY

• _ ST1RUC'I"U_
57X57X25 GRID (81,225 TOTAL MESH POINTS)

VELOCITY VECTORS
GAS TEMPERATURES (R)

CALCULATED FLOW FIELD IN PLANE IN LINE WITH SWIRLCUPS
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CONCERT3D vs. RIG DATA COMPARISON FOR NASAIGE E3 COMBUSTOR

• (EXIT G.ASTEMPERATURE'AVERAGED AND MAXIMUM RADIAL PROFILES)

(37/_ PILOT/MAIN STAGE FUEL SPLIT)L0

O.8

0.6'

0.4 "

O.2

0.0

O x x
• %

% •

/ ' ,• X %

AVERAGED RADIAL PROFILE _

gl]

f_

X

Z

z

0
Z

--- C0NCERT3D MODEL SOI_UTION

O ANN_AR RIG DATA,

a

0.$. 0.7

O

O

O

• %
%

I •

I

MAXIMUM RADIAL PROFILE

/
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I •

,o _
/

/ %

/ I

/ I

• I

fly 0
/ /

/
i J /

I I

,o" _"
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S •

0 LI I_

NON-DIMENSIONAL TEMPERATURE

CONCERT3D vs.RIG DATA COMPARISON FOR NASA/GE E3 COMBUSTOR

(NOxEMISSIONS)

t(
O

,n

25

2O

15

10

MEASURED DATA i

\ ,I/
I

/

/
/

/ CONCER_D SOLUTION/
/

/

I00 200 300 400

COMBUSTOR INLET PRESSURE - PSIA

91



GEAE coNCERT EXPERIENCE:

CONCERT3D WITH PRESUMED SHAPE PDF/FAST CHEMISTRY MODEL AND
THERMAL NOx MODEL DOES WELL AGAINST REAL ENGINE DATA

CONCERT3D WITH TWO STEP EDDY BREAKUP MODEL DOES NOT
CONSISTENTLY DEMONSTRATE ACCEPTABLE AGREEMENT FOR [CO]

AND [HC] EMISSIONS
OTHER PERFORMANCE ISSUES NOT AS WELL pREDICTED COMPARED
TO PRESUMED SHAPE PDF/FAST CHEMISTRY APPROACH

SHORTCOMINGS:

TWO STEP EDDY BREAKUP MODEL NOT ADEQUATE FOR THE REQUIRED

LEVEL OF PREDICTIVE ACCURACY

FAST CHEMIS_rRY CANNOT PREDICT [CO], [HC], AND IGNITION,

BLOWOUT, AND RELIGHT

REQUIRES ACCURATE FINITE RATE CHEMISTRY REPRESENTATION
AND MORE ACCURATE TURBULENCE-CHEMISTRY INTERACTION

MODELING

GE HAS EMBARKED ON THE DEVELOPMENT OF IMPROVED CONCERT MODELING CAPABILITIES

HYBRID CONCERT CFD / MONTF.,-CARLO MODELING APPROACH

APPROACH ADOPTED FOR THE NEXT RELEASE OF COMBUSTION CFD MODELING

CAPABILITY AT GEAE

RETAINS;

- SINGLE STRUCTURED BODYFITrED GRID
- PRESSURE CORRECTION FINITE VOLUME FORMULATION
- K-E TURBULENCE MODELING WITH LOG WALL FUNCTIONS

INTRODUCES;

- MONTE,--CARLO SCALAR PDFTO ADDRESS TURBULENT COMBUSTION

- SINGLEATTRIBUTE(CONSERVEDSCALAR)FORFASTCHEMISTRY
- MUL_E SCALARSFORFINITERATECHEMISTRYOFCH4ANDJETAFUELS

BASEDONAPPROPiATEREDUCEDMECHANISMS

DEVELOPMENT HAS BEEN UNDERWAY SINCE 1992

-3D CODE DEVELOPMENT INITIATED IN MID YEAR 1993
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HYBRIDCONCERTCFD/ MONTE--CARLO MODELING APPROACH

SCHEMATIC OF COMMUNICATIONS IN THE COMBINED CONCERT / MONTE,-CARI_ MODELING

HYBRID CONCERT CFD / MONTE-CARLO MODELING APPROACH

BETA TESTING INITIATED BEGINNING OF 1994

FOCUSED ON FAST CHEMISTRY CALCULATIONS AND OPTIMIZING
COMPUTATIONAL EFFICIENCY

SIGNIFICANT IMPROVEMENT IN COMPUTATIONAL EFFICIENCY ACHIEVED

TEST CASE 1 TEST CASE 2

NUMBER OF GRID POINTS
NUMBER OF M/C PARTICLES
CPU TIME (CRAY C-90 seconds)

CONCERT WITHOUT M/C

9,261 $8,62I
216,000 1,500,000

83

INITIAL HYBRID CONCERT/MC 39,960
OPTIMIZED VERSION 1,770
PERCENT REDUCTION -_95.6%

WALL CLOCK TIMES (seconds) UTILIZING CRAY
MULTI-TASKING OPTION

5,400

187,560
41,400
-77.9%

l,SO0 29,520

RUN TIMES HAVE BEEN REDUCED TO THE POINT WHERE OVERNIGHT TURNAROUND TIMES FOR A TYPICAL

3D COMBUSTOR MODEL ARE POS$1BI...E
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HYBRID CONCERT CFD / MONTE-CARLO MODELING APPROACH

(INITIAL 3D CALCULATION OF CFM56-3 COMBUSTOR WITH FAST CHEMISTRY)

CALCU_TED t't,OW_-IN eLAtE IN LINEwrm nvt,l_r _ cu_

_Nrrz,_ cAzcr/z_r.v szsu_'s suow A r_n,_rusB FZZ_v rwtz Do_ Nor ,tc_tr_ w_e_ WrrHEXT"ECrEV
LEVELS. _LATION SHOWS CON$1DERAJ_LY LESS DIFFUSION OF TIIE $CAI.AR FIELD (FUEL MIXTURE

F_tacrzo_orua_vOaS£SVF.DFROU RtOD/,raaJVDCONCF.rrcarcurarzoNse_SCFO_D USt_Varm_eRF.SUt,r_D
ssa_,E scAzas eDV counus'nos UOD_U_a aeeRoacs.

HYBRID CONCERT CFD / MONTE-CARLO MODELING APPROACH

FUTURE WORK PLANNED

- PERFORM CALCULATIONS AGAINST A BENCHMARK REACTING FLOW

EXPERIMENT WITH AVAILABLE TEST DATA

- BLUFF BODY STABILIZED FLAME ; (GULATI AND CORREA)

- SYSTEMATICALLY STUDY THE EFFECTS OF SCHMIDT NUMBER AND OTHER

PARTICLE TRACKING PARAMETERS ON THE FAST CHEMISTRY SOLUTION TO

IMPROVE AGREEMENT WITH THE DATA

- PERFORM 3D SINGLE AND DUAL ANNULAR COMBUSTOR CALCULATIONS AND

COMPARE RESULTS WITH AVAILABLE GEAE DATA BASE

- IMPLEMENT REDUCED CHEMISTRY SCHEMES (MULTIPLE SCALARS) TO PERFORM

FINITE RATE CHEMISTRY CALCULATIONS

- PREDICT [CO], [HC], AND [NOx] EMISSIONS

- RELEASE CODE FOR PRODUCTION USE AT GEAE

- FAST CHEMISTRY BY END OF FIRST QUARTER OF 1995
- FINITE RATE CHEMISTRY BY END OF THIRD QUARTER OF 1995
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FUTURE MODELING DIRECTIONS

FOCUSED ON IMPROVING THE PREDICTIVE ACCURACY FOR ALL KEY
COMBUSTOR PERFORMANCE ISSUES TO LEVELS THAT WOULD ELIMINATE
THE NEED FOR COMPONENT RIG DEVELOPMENT TESTING

1970's / 1980's

WEEKS J

FUTURE MODELING DIRECTIONS

INDUSTRY WILL LOOK INCREASINGLY TO THE ACADEMIC COMMUNITY

(UNIVERSITIES AND NATIONAL LABS) TO DEVELOP THE NEEDED
MODELING IMPROVEMENTS

INDUSTRY MUST PROVIDE THE GUIDANCE AS TO WHAT IS NEEDED

FUTURE GENERATION MODELS MUST;,

- PROVIDE MORE RIGOROUS REPRESENTATION OF COMPLEX PHYSICAL
PROCESSES

- BE COST EFFECTIVE AS A ROUTINE APPLIED DESIGN/ANALYSIS TOOL
- RETAIN USER FRIENDLY CHARACTERISTICS
- PROVIDE THE LEVEL OF ACCURACY AND CAPABILITIES DEMANDED

OF IT

COMPUTING PLATFORM CAPABILITIES ARE ADVANCING AT A RAPID

PACE

THE PRACTICALITY OF ADVANCED MODELS IN INDUSTRY MAY NOT BE

TOO FAR INTO THE FUTUP_,

TIMETO STARTNOWON DEVELOPMENTOFTHEADVANCEDMODELSOFTHEFUTUREINTOPRACTICALTOOLS
TOHAVETHEMREADY'FORUSEWHENTIlEREQUIREDCOMPUTINGPLATFORMSBECOMEAVAILABLEIN
INDUSTRY
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Computational I 1 Calculation of turbulent heat transfer

Turbulence I .... in "cluttered spaces", by BRIAN SPALDING

1994 I 6 Topic I: The WDIS & WGAP calculation.
!

The need:

* Prandtl-mixing-length models require knowledge of distance

from nearby walls AND between walls (eg Nikuradze formula)

* Many low-Re models require the distance from nearby walls

* In spaces "cluttered" with solids (eg electronics cooling),

calculation of distances and gaps has, in the past, been
time-consuming.

The solution:

* This contribution computes WDIS and WGAP (the required
quantitities) by solving:

div grad L = -1
with L fixed to zero in solids.

Computational I 2 I

Turbulence I ....

1994 1 6

Outline of the theory

Obviously L values which satisfy this equation will be proport-
ional to the distance from the wall at points which are close

to it. The question is: what is the proportionality constant?

The constant depends also on the distance across the inter-

solid space, which however is the other unknown which it is
desired to determine.

The practice adopted by the author is to deduce both the

required quantities, WDIS the distance from the wall, and

WGAP the distance between walls (whatever these quantities may

mean in "cluttered spaces"), from thean algebraic fucntion
of the local values of L and its gradient.

Computational
Turbulence

1994

3
--mww

6
The results

The formula employed gives exact results for situations where

WDIS and WGAP have unequivocalmeanings, namely for the space
between two parallel plates or within a long circular-sectioned

pipe; and it gives plausible results for more complex cases.

The equation for L, with the appropriate boundary conditions,

is of course very easy to solve by numerical means; so WDIS

and WGAP can be quickly computed before the flow simulation
starts.

The use of the method is illustrated by a PHOENICS calculation

for a geometry involving two boxes, a connecting arc, an inlet

and an outlet. It was performed by I Poliakov and S Semin,
of CHAM, to whom the author's thanks are due.
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Computational I 4 I Calculation of turbulent heat transfer

Turbulence I .... I in "cluttered spaces", by BRIAN SPALDING1994 I 6 Topic 2. The LVEL model.
i

The need:

* In "cluttered" regions, the between-solid distances are

too often too small for fine-grid resolution.

* Reynolds numbers are usually low, at least in some plsces.

* A model is needed which gives plausible results in these

circumstances AND fits experimental data for better-studied
ones.

The solution:

* The LVEL model of PNOENICS gets local effective viscosities
from the analytical nuplus-versus-uplus relation which fits

the laminar, transitional & full-turbulent ranges very well

Only local velocity and WDIS (wall distance) are needed.

Computational
Turbulence

1994

5
mmm_

6

Outline of the theory

The u-plus versus y-plus formula of Spalding (1961) is employed

namely:
y+ = u+ + (I/E) * [ exp(K*u+) - I - K'u+ - (K.u+)**2/2

- (K'U+)**3/6 - (K'U+)**4/24 ]

which implies the formula fo_dimensionless effective viscosity

v+ = 1 + (K/E) * [ exp(K*u+) - 1 - K'u+ - (K'u+)**2/2
- (K'u+)**3/6 ]

With the wall-distance and the velocity known at every point,

the effective viscosity can also be computed at every point.

The method is valid for the whole range of Reynolds numbers;

but it is best supplemented by a low-Re "v+-collapse" formula.

Computational
Turbulence

1994

The results

The LVEL model gives the well-known experimental results for

simple circumstances, such as flow in pipes and between paralle

plates; and it gives plausible results for more complex cases.

The use of the method is illustrated by a PHOENICS calculation
of the flow and heat transfer in a small part of a large space

cluttered with solids which participate in the heat-transfer

process.

The method is the only plausible and practicable one known to

the author for handling heat transfer in electronics-cooling

problems, because of the excessive grid-fineness requirements

of low-Reynolds-number k-epsilon extensions.
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RECENT PROGRESS IN THE JOINT VELOCITY-SCALAR PDF METHOD

M.S. Anand

Allison Engine Company
Indianapolis, Indiana

N95- 2789O

o TURBULENCE

o REACTION (treatment, kinetic schemes, emissions)

o TURBULENCE/CHEMISTRY INTERACTIONS

o ATOMIZATION

o SPRAY EVAPORATION

SIMULATION ISSUES:

o NUMERICS (accuracy, convergence)

o GEOMETRY (body-fitted grids, unstructured grids)

o COMPUTATIONAL RESOURCES (Time, Storage)
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JOINT VELOCITY-SCALAR PDF METHOD
iii

SIGNIFICANT MILESTONES AND RECENT PROGRESS

o 2-D and 3-D time dependent flows (with finite-volume method)
(Anand et al. 1987, Haworth & El Tahry 1989)

o Stochastic dissipation model development and validation
(Pope &Chen 1990, Pope 1991, Anand et al. 1993)

o 2-D Elliptic flows (mean pressure algorithm), swirling flows

(Anand et. 1989, 1993)

o Spray treatment

(Anand 1990)

o Manifold methods for reaction kinetics

(Maas & Pope 1992, 1994; Norris & Pope 1994; Norris & Hsu 1994)

o Solve Poisson equation for mean pressure:
b2<p> ¢_2

=-__x_x. <pUIUj >
J J

o Satisfy continuity by solving for velocity correction potential, velocity correction:

Oxiax i ax i <p> _xi

o Solution algorithm is consistent with B-spline representation of mean fields

o Same descretized form: A. s = b

o A is a banded matrix, constant
and same for both <p> and

o LU decomposition only once

o Special band solver economizes
storage and computational effort

Judicious implementation of the
algorithm results in significant
economy in computer resource
requirement

=======================================================
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TURBULENT COMBUSTION MODELING ISSUES

(FOR GAS TURBINE COMBUSTORS)

o Most promising method for turbulent reacting flows

ATTRIBUTES OF DIFFERENT PDF METHODS

Method Attributes

Joint PDF of _ Reaction treated
exactly

Joint PDF of
__Uand

Joint PDF of

U_,_, and

Reaction exact,
Convection (mean and
turbulent) exact,
Variable-density effects
exact

... In addition
Provides complete closure,
Treats turbulent streams of
different scales,
Can account for effects of
large scale structures

Limitations/shortcomings

Assumes gradient-diffusion,
Does not give velocityfield
(requires e.g, k-E)
Turbulence/chemistry interactions
not fully simulated

Needs _equation
(or equivalent)

PDF CALCULATIONS FOR A RECIRCULATING FLOW

(Anand et al. 1989)

m

Uref_!y iI_EA"_rACHPIEHT LEH¢I_: H_,

E%P[It_HEHTAL [xRi :) - 6.75 H

Y CALCULA'I_D - 6.65 K

Backward-facing step

Pronchick and Kline (1983)
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STOCHASTIC DISSIPATION MODEL

o Provides complete closure of the PDF equation (joint velodty-frequency-scalar)

o More realistic than a mean dissipation model. Dissipation (rather, turbulent
frequency) is also a random variable and included in the joint PDF.

o Treats multiple scales in the flow

o Accounts for internal intermittency

o Accounts for effects of large scale structures, and influence of origin and history
of the flu!d particles

J
+ Cz _) dt + <0)> 2h dt + ¢0"(2Cz <03> 0"2)1/2 dW "]d0)" <(,0> (So_J

!

i dui 1 a<P> - li = dt +Didt+(Cok c°*)1/2 dWi
P 3xi t

SWIRLING FLOWS

o No theoretical limitations

o Additional production terms due to non-zero mean swirl velocity

o Additional terms in calculating the mean pressure (or mean pressure gradients)

- Boundary layer flows:
> radial pressure gradient
> axial pressure gradient also included

- Elliptic flows
> additional terms in the Poisson equation for pressure

o Validation of the stochastic dissipation model and first calculation of swirling
flows with the joint PDF method (Anand et al. 1993)
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7 __EC_OR SWIRLING FLOWS

...... "l I INES - CALCULATIONS
..... 4 r, [ SYMBOLS - DATA

I i • JET FLUID
/ "i SWIRLER FLUID
[ • COFLOW FLUID

X/D = 5.29

XJD= 5.29

JOINT PDF CALCULATIONS FOR SWIRLING FLOWS

COMPARISON WITH REYNOLDS-STRESS MODEL RESULTS AND
ASSESSMENT OF GRADIENT DIFFUSION MODELING

x/D = 1.06 2.65 5.29
3,'" r

-,

n-

°°-

i
I

o ).io o:o .4o

RS MODEL:
_<u =

<uZv>=-C_ I< <v_>

i

>

< _> _r

C$=0.22

J

I I f

1000<u2v>/<U>3oc

PDF CALCULATIONS
RS MODEL WITH RSM RESULTS
RS MODEL WITH PDF RESULTS
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SPRAY CALCULATIONS

(Anand 1990)

o Advanced spray models (stochastic
Lagrangian, Monte Carlo) naturally
compatible with the joint PDF method

o Assumptions about turbulent kinetic
energy partition avoided

o Effects of gas phase turbulence
structure (velocity cross-correlation)
included

• /_" 062 1.94 2.g7
4

2

.5 I .|

10 k/U_, c

105 micron class beads. NASA HOST C data

,/0- 0.82

3

2

t

.0 .5 t .e

,/O- e.62 1.84

,L

Computed profiles o£ normalized

turbulent kinetic energy of air compared

against data.

l.e4 2.m7 3.1l 6.22

t

I
I

_Z.4

2.07 3,:t 6.22 ;_.4

I
f

1
10u'_Udo,c

i

REDUCED KINETICS / MANIFOLD METHODS

o Low dimensional manifold methods (ILDM, TGLDM)

- Given detailed kinetcs, they provide low-dimensional description
(e.g., l-D, 2-D, 3-D) in multidimensional composition/scalar space

- Use dynmical systems theory to determine the low. dim. manifold

- Avoid ad hoc assumptions, e.g, partial equilibrium of some of the reactions
Implications for ignition and lean blow-off

- Not fuel specific like conventional reduced kinetic schemes

0.006 •

o0os_

_ 0.004 HO oo¢ool

m I _ Fullmechanism
_ 0.002_- • 2DTGLDM

[ O 1DTGLDM _

0.001

0.000

10 .7 t04 10 .5 10 4 10 4
t (S)

Perfectly Stirred Reactor (Pope & Maas 1993)

wGQ2 • WH20 WCH. WH

0,25 i !; _ 5,0 104

0.20 4.0 10 "_

0.15 3.0 10 .3

0.10 2.0 1 0 4

: __'_'_ " ' i 1.0 10 .3
0.05

0:00 J_.... 0.0 _ o°

4.5 5,0 5,S 6.0 6.5 t {mm)

Laminar Premixed Flame (Maas & Pope 1994)
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PARALLEL PROCESSING

o Objective: Turnaround time of 1day or less for 3-D combustor calculations

o Particle partitioning, domain decomposition (multigrid, multi-block)

o Preliminary results for 2-D flow with particle partitioning (Pope 1994)

- 16 nodes, I28 MB each, IBM SP1
- 12.8 million particles (800,000 per processor)
- 50 time steps
- 44 minutes/processor (45 minutes clock time)

Extrapolation to 3-D combustor calculations
- 6.5 hours clock time with 32 processor SP1

JOINT PDF FOCUS AREAS

o 3-D Flows, Improved solution algorithms

o Parallel processing

o Reduced kinetics / Low Dimensional Manifolds

o Evaporating / reacting sprays

o Emphasis on emissions and performance predictions
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OVERVIEW OF TURBULENCE MODEL DEVELOPMENT AND

APPLICATIONS AT ROCKETDYNE

A.H. Hadid, E.D. Lynch, and M.M. Sindir

Rocketdyne Division
Rockwell International

Canoga Park, California

N95- 27891

TURBULENCE MODELING REQUIREMENTS,
DEVELOPMENT PHILOSOPHY AND APPROACH

• REQUIREMENTS

• TURBULENCE MODELING IS A KEY ENABLING TECHNOLOGY
FOR ALL PROPULSION RELATED CFD ACTIVITIES

• FACTORS TO CONSIDER INCLUDE ACCURACY, CONSISTENCY,
COMPUTATIONAL COST, AND EASE OF USE

• TURBULENCE MODELS THAT CAN NOT BE INCLUDED IN
PRODUCTION GRADE CFr9CODES ARE OF LIMITED VALUE
TO INDUSTRY

PHILOSOPHY

• BASIC MODEL DEVELOPMENT IS BEST LEFT TO SPECIALIZED
"CENTERS OF EXCELLENCE"

• VARIOUS CLASSES OF MODELS NEED TO BE SUPPORTED SINCE
NO SINGLE UNIVERSAL MODEL IS SHOWN TO EXIST

• ESTABLISHING THE RANGE OF APPLICABILITY, ACCURACY, AND
THE COMPUTATIONAL COST OF THE MODELS IS ESSENTIAL

TURBULENCE MODELING REQUIREMENTS,
I

DEVELOPMENT PHILOSOPHY AND APPROACH (Cont.)

APPROACH

• IDENTIF--_;KEY "CENTERS OF EXCELLENCE" AND ESTABLISH
COLLABORATIVE RELATIONSHIP

• ACQUIRE MODELS AND ASSESS PERFORMANCE FOR THE
INTENDED CLASS OF APPLICATIONS

• DELINEATE MODEL DEFICIENCIES AND INITIATE EFFORT TO
REDUCE THEM

• DEVELOP MODELS INTO STAND-ALONE MODULES
• INCLUDE MODULES IN PRODUCTION CODES AND ESTABLISH

BASELINE FORAPPLICATIONS
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TWO MAJOR AREAS OF CONCENTRATION

• HIGH SPEED TURBULENCE MODELING (LEAD DR. DOUG LYNCH)

• FOCUSED ON HIGH SPEED (M>I) PROPULSION (ROCKET
AND AIRBREATHING) AND AERODYNAMICS

• EMPHASIS ON 2-EQUATION PHENOMENOLOGICAL MODELS
WITH NASA ARC AND LARC AS KEY TECHNOLOGY PARTNERS

• LES WORK IN PLANNING STAGES WITH CTR

LOW SPEED TURBULENCE MODELING (LEAD DR. ALl HADID)

• FOCUSED ON LOW SPEED (M<I) AND ROTATING FLOW
APPLICATIONS

• EMPHASIS ON REYNOLDS STRESS PHENOMENOLOGICAL
MODELS IN COLLABORATION WITH UMIST, ICOMP, CTR, AND UAH

• LES WORK INITIATED WITH CTR

HIGH SPEED TURBULENCE MODELING

• EMPHASIS IS ON THE DEVELOPMENT OF ENGINEERING
TURBULENCE MODELS FOR

• HIGH SPEED AIRBREATHING PROPULSION SYSTEMS
• THRUST CHAMBERS
• VEHICLE AERODYNAMICS

• APPROACH TAKEN IS BASED ON 2-EQUATION MODELS

- DIFFERENT CLASSES OF 2-EQUATION MODELS STUDIED

• k-E
• k-e)

• POINTWISE Rt
._ COMPRESSIBILITY EFFECTS AND TURBULENCE-CHEMISTRY

INTERACTIONS MAJOR MODEL UPGRADE THRUSTS
• COMPRESSIBILITY MODIFICATIONS FROM ARC
• TURBULENCE-(3i_EMiSTRY INTERACTION MODELS FROM LARC

• USA AND GASP SERVE AS NUMERICAL PLATFORM

• GASP - CHIEN, LAM-BREMHORST k-_, k-o)

• USA - VARIETY OF k-_, k-(o
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COMPRESSIBILITY EFFECTS

• MIXING LAYER SPREADING REDUCED AT HIGH MACH NUMBERS

• INCREASE DISSIPATION RATE OF k

• DEFINE Ck2AS A FUNCTION OF TURBULENT MACH NUMBER p_p-_
• ZEMAN MODIFICATION (1990)
• SARKAR (1990, 1991) AND WILCOX (199,1)PROPOSALS

• MODIFICATIONS OF ZEMAN AND SARKAR NOT RECOMMENDED

• HEAT TRANSFER OVER PREDICTED NEAR SHOCK WAVES

• LIMIT TURBULENT LENGTH SCALE LtTO MIN(k_----_-2 Ky )
(VUONG AND COAKLEY, 1987) '

• SEPARATION UNDERPREDICTED IN RAPID COMPRESSION OR
STRAIN REGIONS

• INCREASE a _-C)Rc_o_UNDER RAPID COMPRESSION (VUONG AND
COAKLEY)

• HEAT TRANSFER OVER PREDICTED FOR VERY COLD WALLS

T weEaw<0.1 (COAKLEY)

• CEBECI-SMITH - 60%, k-co ~ 40%, q-o) ~ 10%, k-E ~ 30%

TURBULENCE MODELS ADAPTED TO USA CODE

BIkhd_Lomu

I. Myong-Kasagl

2. Chlon (lgB2) X

3. Jones-L_det X

('_9"r'4

4. Laundet-Sharma X

{'1974)

S. Huang-C_Uey X

{19rZ)

6. Spez.blle-So-Zh_ X
{1s,n)

7. Lsm=Bmmhot=lt X

{I_NI1)

8. High I_1 X

1. High Re Wilcox
{lgglll}

21 LOW Re WIlcox

(1991b)

Coakley (1987)

One-Equal|on (Goldberg, -
Two-Time ,S_IIII 1992)

One-Equatlon RT

(Goldberg 1993,1994)

TRANSmON MODEL

DAMIq_IG BOUNDARY HiGH ORDER

_rAlJ, LOCAL CON_S _ ARNAL

X 3 Vmlons X X

X X k=O X

x _:g x

x klg x

X k=0 X
¢=0

ksO

x c._h _ x

k=O

k=0 X
X cy=O

X Will Func_tIon X

COMPRESSIBILITY EFFECTS

MDONG LAYER SEPARATION REJkTrACHMENT

._P..B,F=_L_ _ HEAT'TRANSFER

1. Sarkar (1R91) 4. Yuong & S. Vuong &
2. Zernln (I_R0) Coaklly Coakliy

3. Wilcox (1_1} (1987) (lg87)

1,2,3. 4. 5.

1_ 2., 3. 4. 5.

I_ 2., 3. 4, S.

1_ 2., 3. 4. 5.

I. 2., 3. 4. 5.

1_ 2., 3. 4. 5.

_0=O10_i X 1.2., 3. 4. &

k=0 4. 5.
®, 7.z_ht= x 1., 2_:3.

ksO X

_.0

k=O

X d(d_y)=_=0 X
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M = _).2 FLAT PLATE FLOW

CHIEN k-_ MODEL WITH RAPID COMPRESSION AND LENGTH SCALE
COMPRESSIBILITY MODIRCATIONS

1.0

0J

0.1

0.4

0.2

0.0'

VELOCFr'Y PROFILE

S

PI[D_CTIONB
• 'lEST O/,TA

U..0

TURBULENTVISCOSITY

1o",

1o' |

lO _ d

10'|

j ,o,f

10"|

10"| • : _ P'-'--

- / • ,,....
I0"| -" * •

,o+_ / /
1o_.J

.i :s --<>- ._sm_..-n,v_m

/ **' ._. 1,45. Ir4_R,B_M.

10"_ • ..... .L" _m

10" 10" t0" 10 _ 10' 10' t0'0.5 1.0 1.S 2-0 10'

y/delta yplu$

REF: G.T. COLEMAN AND J.L. STOLLERY, JFM 56: 741, "HEAT.TRANSFER FROM A
HYPERSONIC TURBULENT FLOW AT A WEDGE COMPRESSION CORNER"

MACH 7.05 FLOW OVER AXISYMMETRIC FLARE

CHIEN k-coMODEL WITH RAPID COMPRESSION AND LENGTH SCALE
COMPRESSIBILITY MODIFICATIONS

AX]SYMMETRIC FLARE WALL PRESSURE FOR AXISYMMETRIC FLARE

8 = 2 cm e = 35 °

M=7._

! !
139 cm

4O

--¢ 30'
D.

a. 20 _

10 _

o;
-20

RD PREDICTIONS

__• ARC PREDICTIONS

-10 0 10 20

x(]n)

E

REF: M.I. KUSSOY AND C.C. HORSTMAN, "DOCUMENTATION OF TWO- AND
THREE-DIMENSIONAL HYPERSONIC SHOCK-WAVE TURBULENT
BOUNDARY LAYER INTERACTION FLOW," NASA TM 1-01075.
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MACH 7.05 FLOW OVER AXISYMMETRIC FLARE
CHIEN k-oJMODEL WITH RAPID COMPRESSION AND LENGTH SCALE

COMPRESSIBILITY MODIFICATIONS

. WALL HEATTRANSFER FOR AXISYMMETRIC FLARE

,1

O"

40"

3O

2O

10'

PREDICTIONS

• TEST DATA

-10 0-20 10 20

x (in)

MACH 8.6 FLOW OVER COLD WALL WEDGE

M=8.6

TW/Taw = 0.065

THREE STUDIES

1. CHIEN k-E MODEL WITH RAPID COMPRESSION AND LENGTH SCALE
CORRECTIONS AND WITH AND WITHOUT MIXING LAYER TREATMENT

2. HIGH-Re k-o MODEL WITH VARIOUS AIR CHEMISTRY MODELS

3. BALDWlN-LOMAX TURBULENCE MODEL USING WALL AND LOCAL
DAMPING
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MACH 8.6 FLoW OVER COLD WALL WEDGE
CHIEN k-_ MODEL WITH AND WITHOUT MIXING LAYER TREATMENT

O"

4,

3

2

0
U.0

HEAT FLUX CALCULATIONS

WITHOUT MIXING LAYER MODIFICATIONS

"-'-_"" WITH MIXING LAYER MODIFICATIONS {SARKAR)

• TEST DATA

0.2 0.4 0.6 0.8 1.0

xlL

MACH 8.6 FLOW OVER COLD WALL WEDGE
HIGH-Re k-coMODEL WITH VARIOUS AIR CHEMISTRY MODELS

HEAT FLUX CALCULATIONS

4
""_" NONEQUILIBRIUM AIR KINETICS (KANG & DUNN)

m PERFECT GAS

g

w • • • _'O "_ ;_ _ _"W q" "_........ -_ ........ -_ ........... _..,

uo o12 o14 o16 o8
x/L

.o
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"E

MACH 8.6 FLOW OVER COLD WALL WEDGE

BALDWIN LOMAX, k-E, k-coMODEL COMPARISONS

HEAT FLUX CALCULATIONS

4
.... a--- BALDWIN-LOMAX WALL DAMPING

..... o--- BALDWIN-LOMAX LOCAL DAMPING

,,-,--e--- k-cD (NONEOUIUBRIUM)

3 • --'-,--- k-¢(EQUILIBRIUM)

• TEST DATA

2' _._ -_.....=
4",1. .... "6o_+...,&

,-I- ..I- .,+,._.q....p....+ .... .-I-.... ,-t- ..... .,.p..

U.0 0.2 0.4 0.6 018 1.0

x/L

LOW SPEED TURBULENCE MODELING

• EMPHASIS IS ON THE DEVELOPMENT OF ENGINEERING
TURBULENCE MODELS FOR

• ROTATING MACHINERY
• FLOW IN DUCTS AND MANIFOLDS
• REACTING FLOWS

• APPROACH TAKEN IS TO

1. SYSTEMATICALLY ASSESS EXISTING PHENOMENOLOGICAL
MODELS USING COMMON NAVIER-STOKES SOLVER

2. IDENTIFY, DEVELOP AND VALIDATE MODEL UPGRADES
COMMENSURATE WITH OBSERVED FLOWPHYSICS

3. DEVELOP SELF-CONTAINED TURBULENCE MODEL DECKS

(MODULES) THAT CAN BE'INTEGRATED WITH NAVIER-STOKES
SOLVERS

4. PROVIDE GUIDANCE TO EXPERIMENTAL AND THEORETICAL
RESEARCH IN TURBULENCE MODELING FOR ENGINEERING
AP PLICATIONS
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TURBULENCE MODELS BEING ASSESSED

PHENOMENOLOGICAL SINGLE POINT CLOSURE MODELS

SINGLE-SCALE I MULTI-SCALE

I I
2-EQUATION MODELS ALGEBRAIC REYNOLDS

K- ¢ (SKEM) STRESS MODELS STRESS MODELS
(ASM) (RSM)

2-EQUATION
K- s (MKEM)

_ODELS

NEAR-WALLTREATMENTSINCLUDE(WHEREAPPROPRIATE)WALL
FUNCTIONS,MULTILAYERMODELS,ANDLOW-REYNOLDSNUMBER
APPROXIMATIONS

TURBULENCE MODEL DECK STRUCTURE AND
INTEGRATION WITH NAVIER-STOKES SOLVER

PREPROCESSOR

1. GRID
2. BOUNDARY CONDITION FLAGS
3. FLOW PROPERTIES
4. INITIAL CONDITIONS

NAVIER-STOKES
SOLVER

__ INPUT TO

TURBULENCE
DECK

MEAN VELOCITY
UI

ITERATION LOOP

TURBULENCE MODEL DECK

SELF-CONTAINED DECK

WITH BUILT-IN SOLVER

_2 LEVELS OF MODELING_X._\

_\\\\\\\\\\\\\\\\\'_,
I EDDY VISCOSITY MODELS

REYNOLDS STRESS MODELS

U_,£1 1, ASM

J' | .2. ,,RSM
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PROJECT WELL UNDERWAY

• TEAM

• MODELS PROVIDED BY UMIST, LERC/ICOMP, ARC/CTR
• MODULE DEVELOPMENT BY ROCKETDYNE
• MODULE TESTING BY ROCKETDYNE (REACT, USA) AND

UAH (MAST)
• MODEL UPGRADES BY ROCKETDYNE, UMIST, ARC/CTR
• APPLICATION BY ROCKETDYNE TO TURBOPUMP

COMPONENT (E.G. IMPELLER) ANALYSIS

• 2-D MODULES COMPLETED, TESTED, AND RELEASED

• SINGLE SCALE k-_
• MULTI SCALE k-_
• ASM
• RSM

• 3-D MODULE DEVELOPMENT IN PROGRESS

NONLINEAR ALGEBRAIC-STRESS MODEL

VORTEX SHEDDING FROM RECTANGULAR CYLINDERS (DURAO, et al)

PARTICLE STREAKLINES

....... ."" { ;.'_r. _i_ +

g,u , "," .... "= ,

I.u o,i o.l a., ,4

x

MEAN AXIAL VELOCITY ALONG CENTERUNE

l= _/o

ii
'+ :' _ D_To ¢1 ,J,

• -. _iolio91+ k< MPJII

+_.ii ._1 ii _ II II II 11 II

XA!

MEAN KINETIC ENERGY ALONG CENTERLINE

Lg

I L,=

w_

+i I

s

i+ ; /-. •

/X.+.

,." ;/ "+,........
if' a _,3"+ ,+ ,.I.

._oll
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ROTATION MODIFIED k-_ MODEL

BACKWARD FACING STEP (DRIVER AND SEEGMILLER)

STREAMUNE CONTOURS

rl.00 °
o.m 0.02 o.o,i o.os o.m o.lo

HodLr;.ed k-e

MEAN AXIAL VELOCITY AT X/M=4 RADIAL TURBULENT INTENSITY v('v('_/U2ref)

u

=,._1 u u _ u u u

ut __=.
=-,

_. ,._WlBC, e_x

ALGEBRAIC STRESS MODEL

CONFINED COAXIAL SWIRLING JET FLOW (ROBACK AND JOHNSON)

GEOMETRY

DECAY OF MEAN AXIAL CENTERLINE VELOCITY

..... /_SM wall turcL_or_

_ two-_ye.T model

o " "'"

,_ 0000

o, , i ,. I -- = "

00 0.1 02 0.3 04

AXIAL DIST,._LNCE(_0

STREAMLINE CONTOURS

_----------_::_

-=
0.0 0.1 02 03 04 05

X(m!
RADIAL PROFILES OF

25 m_

_o

o,o o.4 0.8
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REYNOLDS STRESS MODEL (LRR - MODEL)

BACKWARD FACING STEP (DRIVER AND SEEGMILLER)

STREAMLINE CONTOURS

o.oo-_

,,.oo o.,1_ a;a4 o.= oi= _o..1o

MEAN AXIAL VELOCITY AT X/H=4

,o

AXIAL TURBULENT INTENSITY AT X/H=4

CONCLUDING REMARKS

. PROGRAMS (BOTH COMMERCIAL AND GOVERNMENT) EMPLOY
NEW TECHNOLOGY ONLY WHEN IT PROVIDES "ADDED VALUE"

• REDUCED DEVELOPMENT COST
• INCREASED RELIABILITY AND PERFORMANCE
• ENHANCED MANUFACTURABILITY

• THE NEW TECHNOLOGY WE OFFER iS THE COMPUTATIONAL
ENGINEERING TOOLS FOR PRODUCT DESIGN AND ANALYSIS

• THESE TOOLS ARE THE END PRODUCT FOR ALL ENABLING
TECHNOLOGY DEVELOPMENT

• PRE- AND POST PROCESSING
• ALGORITHMS AND NUMERICAL PLATFORMS
• :PHYSICAL MODELS (E.G. TURBULENCE AND CHEMISTRY)

• FAILURE OF ANY ENABLING TECHNOLOGY JEOPARDIZES THE

PERFORMANCE (VALUE) OF THE TOOL

NOW MORE THAN EVER, THERE IS A NEED FOR CLOSER
COLLABORATION AND COOPERATION BETWEEN GOVERNMENT,

INDUSTRY, AND RESEARCH INSTITUTIONS TO ENSURE
MAINTENANCE OF COUNTRY'S TECHNOLOG Y BASE
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RECENT ADVANCES IN PDF MODELING OF TURBULENT REACTING FLOWS

A.D. Leonard and F. Dai N95- 27892

CFD Research Corporation

Huntsville, Alabama
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MOTIVATION
Accurate and Efficient Prediction of Emissions

=

1

Accurate Prediction of Emissions From Combustion

Devices Requires Treatment of Finite-Rate Kinetics

The Effect of Turbulent Fluctuations in Velocity, Energy,
Composition, etc. on Finite-Rate Chemical Kinetics Must
be Modeled
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TURBULENCE/CHEMISTRY INTERACTIONS
=1_1= • i •

Possible Approaches

• Neglect Fluctuations
+ Simple
- Ignores Effect of Turbulence

• Eddy Break Up .....
+ Simple
- AeNlumes Fast Chemistry
- Mean Density, Temperature Must Still Be Modeled

• Prescribed PDF
+ Efficient
- Umlted to Fast Chemistry or Single Step Reaction

• Composition PDF
+ Finite-Rate MulU-Step KtneUcs
- ExpensiVe
- Gradient Diffusion

• Velocity-Composition PDF
+ More Accurate
- More Expensive

PARTICLE REPRESENTATION

A Solution Method for a Large Number of
Independent Variables

• Computational Requirements Increases Exponentially
With Dimensions for Finite Difference Methods

• Computational Requirementslncrease Linearly
With Dimensions for Monte Carlo Methods
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COMPOSITION PDF SOLUTION

Stochastic Lagrangian Particle Simulation

Particle Composition and Position Changed to Model Transport of
Joint PDF

• Mean Convection
- Move Particles Between Cells

• Chemical Reactions
- Lookup Table Holds Composition Change

• ,ur ue.,..uso. t
Exchange Particles Between Cells

• Molecular Mixing
- Particle Interaction Changes Composition

COUPLING
I

PDF Solution is Separate Module

I CFD-ACE

U, v, W, k,e

P

Monte Carlo]PDF J

f (_P'I, "'"_n)
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CHEMICAL KINETICS

Reduced Models are Used

Hydrogen:

CO:

Methane:

2H2+ O2¢=>2H20

CO + H20 ¢=>CO2 + H2

2H 2+ O2_2H20

CH4 + 2H + 2H20 _CO + 4H2

CO+H=O_CO 2 + H2
2H2 + O2-->2H20

3H2+ O2¢:_2H20 + 2H

Hydrocarbon:CnH2n.2 +(_-)O2--> n CO +(n +1) H2
C.H2n÷2+ n H=O-_ n CO +(2n +1)
CO + H20 ¢:_CO2+ H2

2H2 + O=<=>2112O

Thermal NO: N2+O _NO + N

N +O2_NO+ O
N +OH¢_ NO+H

RESULTS TO BE PRESENTED
I

• Jet Diffusion Flame (Hydrogen with Helium Dilution)

• Bluff Body Stabilized Flame (H2/CO)

• Piloted Jet Diffusion Flame (Methane)

• Generic GasTurbine Combustor (Propane)
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HYDROGEN JET DIFFUSION FLAME
I II I I

Illustration of Experiment at
Sandia National Lab

KmV

4_

mK

-)(-_

Re -- 104

Fue.___l

100% H2

80% H2, 20% He

60%H2, 40% He

60% HYDROGEN FLAME

Scatter Plots of Mixture Fraction and
NO Mole Fraction

40 _ x=U2
P

v

0._ 0._ 0.06 0.03 0.12 0,15
f

50 . . t , , i . . i + + iSO ''=''=''=''l''

40 l=_._ xgL
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20 "..; "" XzO 20 '_!'_,c'_,
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o P't'_"A"_+.' , -+;. ,'""."._ o ......
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I f

PDF
Results
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UNDILUTED HYDROGEN FLAME

Conditional Averged NO Mole Fraction
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BLUFF BODY STABILIZED DIFFUSION FLAME
II

Illustration of Experiment of Correa and Gulati

Inlet Air Flow -I_
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PILOTED JET DIFFUSION FLAME

Illustration of Experiment of Masri et.al.
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PILOTED JET DIFFUSION FLAME

More Accurate Prediction with Monte C_i:io PDF

No PDF Prescribed PDF Monte Carlo PDF
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GENERIC GAS TURBINE COMBUSTOR

Pratt & Whitney Four-Nozzle Sector
Combustor Tested at Wright Laboratory

67,840 Cells
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MONTE CARLO PDF COMBUSTOR CALCULATION
Stochastic Particle Traces

VERTICAL PLANE THROUGH CENTER OF
FUEL INJECTOR

II i

Mean CO Mass Fraction Countours
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RUN TIME AND MEMORY
IIIII II

3D Combustor Calculation
. (68,000 cells)

Conventional CFD

CPU Time 20 hours
Memory 80 MBytes

Monte Carlo PDF

CPU Time 100 hours
Memory 120 MBytes

Parallel PDF (Projected)

et25hours _25hours t25hours J25hours30 MBytes J 30 MBytes 30 MBytes 13-0_s

. CPU Time for IBM RS/6000 Model 560

CONCLUSIONS

Monte Carlo PDF Solution Successfully Coupled with
Existing Finite Volume Code
- Minor Changes to Finite-Volume Code
- Can be Coupled with Other Codes

PDF Solution Method Applied to Turbulent Reacting
Flows
- Good Agreement with Data for 2D Case
- Demonstration of 3D Elliptic Flow

PDF Methods Must be Run on Parallel Machines for
Practical Use
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EXPERIENCE WITH TURBULENCE INTERACTION AND TURBULENCE-CHEMISTRY

MODELS AT FLUENT INC.

D. Choudhury, S.E. Kim, D.P. Tselepidakis,

and M. Missaghi

Fluent Inc.

Lebanon, New Hampshire

N95- 27893

Outline of Talk

• Part I: Turbulence Modeling

- Challenges in Turbulence Modeling

- Desirable Attributes of Turbulence Models

- Turbulence Models in FLUENT

- Examples using FLUENT

• Part II: Combustion Modeling

- Turbulence-Chemistry Interaction

- FLUENT Equilibrium Model

• Concluding Remarks

Part I:

Turbulence Modeling and Industrial
Flows

• Many industrial flows are turbulent; certainly in the markets
that two of our codes, FLUENTand RAMPANT, are focused in.

• Turbulence augments rates of mass, momentum and heat trans-
fer, often by orders of magnitude.

• Most combustion processes involve turbulence and often de-
pend on it.

• Choice of turbulence model dictates the accuracy of CFD pre-
dictions.

• There is still a large gap between the state-of-the-art and users'
expectations and needs.
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Challenges in Turbulence Modeling

• Modeling the correlations: pui-_ and pu,-_.¢.

- Closures based on the "eddy-viscosity" concept (indus-
try's most popular choice)

- Closures based on transport eciuations (RSM)

• Modeling an additional transport equation for a scalar quantity
to fix the state of turbulence.

- Most popular choice: the kinetic energy dissipation rate,
g,

- However, this equation is derived by continuum mechanics-
based phenomenological considerations and intuition.

• Modeling of the viscosity-affected, near-wall laminar sublayer.

- Most popular choice: "Wall-functions" that bridge the
turbulent field to the solid wall.

- However: assumptions involved are not always right.

Desirable Attributes of Turbulence

Models in Commercial CFD Codes

• Accuracy and UniversaliW

- The range of applicabiliw should be as broad as possible.

- Applicable to complex geometries and unstructured meshes.

• Economy

- Mathematically simple.

- Memory and CPU requirements should be moderate and
affordable (model formulation and grid distribution re-
quirements).

• Robustness

- Model should be able to solve a wide range of problems
with little or no convergence problems.

- Computationally efficient (fast execution speed and uses
memory, sparingly).
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Turbulence Models in FLUENT

• k-6 model adequate for simple flows with no significant strain
rates.

• RNG k-c model for separated flows, flows with large streamline
curvature, swirling flows, or flows with significant strain rates.

• RSM recommended for swirling flows or highly anisotropic flows.

k-c Model: Some Comments

• \Yell-tested, used for over 20 years, limitations well understood.

• It forms a good compromise between universality and economy
of use for many engineering problems.

• Subject to the inherent limitations of the Boussinesq's hy-
pothesis, i.e., isotropic eddy-viscosity and Newtonian closure
(gradient-diffusion model).

• Many assumptions are introduced in deriving the modeled equa-
tions for the turbulent quantities, particularly the c-equation,
making their fidelity limited.

• The constants in the modeled equations are calibrated against
simple benchmark experiments.

• As a result, the k-c model performs poorly in flows with cur-
vature, swirl, rotation, separated flows, low-Reynolds number
flows, strongly anisotropic flows, etc.
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Renormalization Group (RNG)
Based k-e Model

• Basic theory and derivation are described in Yakhot and Orszag
(1986). Further details and applications are in Yakhot, Orszag,
Thangam, Speziale, and Gatski (1992), Speziale and Thangam
(1992).

• Fh-st introduced in a commercial code, FLUENT, in 1992.

• The RNG method is essentially a scale-elimination technique
that can be applicable to the Navier-Stokes and other scalar
transport equations as well.

• Removal of successively large scales leads to differential trans-
-port eqfiatlon models and associated formula for quantities such
as the turbulent Prandtl/Schmidt number.

• The basic form of the RNG-based k-¢ equations remains largely
the same with the standard k-¢ model. But, the constants in
the model equations are derived explicitly from theory.

• The G-equation ends up with an additional source term, a
strain-dependent term.

• The RNG model can be integrated directly to a solid wail with-
out using ad hoc damping functions or damping terms used in
many near-wall models.

• High-Re form of the turbulence kinetic energy and dissipation
rate equations derived by RNG procedure are:

Ok Ok O(vTOk)

where:

ak = a_ = 0.7179

Pk = 2VTSijSij is the kinetic energy production

0U.)+ :._:z is the mean rate of strain tensorSij = ½ \O=j O=i

k2
ur = C_7-

C._ (]-'_) D
= i +_,7J 3"

,7= Sk/c, S = (2 S,j
r/0 = 4.38, ]3 = 0.015
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RNG-Based k-e Model (Cont'd)

• In the low-Re RNG model, a differential relationship exists

between :_E and Ve_ (Yakhot and Orszag, 1986).

• The turbulent Prandtl/Schmidt number is no longer a constant,
and computed from relationships relating the local value of the
number to the viscosity ratio (Yakhot and Orszag, 1986).

• In these relations, as P ------*1, r, ----. a0 (the low-Re limit) and
as _ ----, co, a = a -1 ---* 0.7179 (the high-Re limit). Here:

f., = v_/vo, where v_ = v0 + vT

a = inverse turbulent Prandtl number (a -1)

a0 = inverse molecular Prandtl number (a_ "1)

• In the low-Re regions, ak and aE are obtained similarly from
the Prandtl number relationships, with ix0 = 1.0.

• The relationships ensure that in the high-Re number part of
the flow where f, > > 1:

k 2
v_r = _r = 0.085-

e

and the effective viscosity varies smoothly from the molecular
viscosity to the turbulent viscosity.

• The low-Re eddy-viscosity formula does not explicitly involve

any geometric length scale, i.e., the distance from a solid wall
used in the damping functions adopted by most low-Re near-
wall models, which is a very convenient feature for calculations
for complex three-dimensional geometries.

• In collaboration with the originators of the RNG model, Drs.

Yakhot and Orszag, the model has been extended to account
for the effects of compressibility, swirl, rotation, and premixed
combustion.

• The RNG-based k-e model also wor "ks well with conventional

and enhanced (non-equilibrium) wall functions available in Flu-
ent Inc.codes.
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The Reynolds-Stress Model in

FLUENT

! !
• RSM solves transport equations for the Reynolds stresses: uiuj

(4 equations in 2D problems, 6 equations in 3D problems).

• RSM is the level of modeling that has a well established track

record of out-performing eddy-viscosity models in complex flows.

• It is computationaUy more expensive and more inclined to di-

vergence and stability problems.

• The simple and most widely tested form of the Launder, Reece

and Rodi (1975) form is used.

• The interpolation technique for co-located grids of Rhie and

Chow (1983) is used.

• It offers the best choice for highly anisotropic flows.

Example 1:

Circle-to-Rectangle Transition Duct

• Measured by Davis (1991).

• ReD = 3.9 x 10 5.

• Solution Domain.

- Upstream Inlet Boundary: x/D = -1.0

- Downstream Exit Boundary: z/D = 8.0

- A Quadrant of the duct modeled.

×

Z

STATION 6
Y

_;__ STATION 5

__ STATION 4-
_ STATION 5

__'_ii_ V STATION 2

STATION I
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_Y

6.0

4.0

2.c

Turbulent Flow in a Transition Duct

-b-__o-b-__ .-"b",,

Calc. ( RNG/k - e )

........ Cale. (RSM [ Soti. & Patel )

O Experiment ( David O. Davis )
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[ Exp,

Contours of computed streamwise velocity

(1R/XlG-based k-e model)
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Example 2:

Cyclone Sparator

• Measured by Qing (1983).

• RSM is used.

• Cylindrical 55 x 23 x 41 grid.
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Example 3"

180 ° Bend of Square-Cross Section

• Solution Domain

- Upstream Boundary: 5.0DH from the start of the bend

- Downstream Boundary: 5.0D_r from the end of the bend

- A symmetric half of the duct modeled.

• Mesh

- Orthogonal 101 x 47 x 27

- Distance from the wall _ 0.01DH
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Part II:

Combustion Modeling

• With environmental awareness: legislations on combustion- gen-
erated pollutants such as NO=, SO= carbon monoxide, soot,
unburnt hydrocarbons, etc. have become increasingly tougher.

• Combustion simulation in industrial applications can help us to

design ¢ombustors with higher efficiencies and lower pollutant
emissions.

• The combustion process involves some of the most complex

phenomena such as chemist_': multiphase flow, turbulence,
heat transfer and the interaction between these phenomena.

• Here we focus on gaseous combustion in which the reactants
may be mixed or non-mixed prior to flowing into the combustor.
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Turbulence-Chemistry Interaction

• Accurate simulation of turbulent combustion requires a thor-
ough assessment of the way turbulence and chemistry interact.
The reaction rate and flame structure primarily depend on this
interaction.

• In turbulent flames, chemical rates can be significantly differ-
ent than those in laminar flames (sometimes several orders of
magnitude), and the mean chemical rate is not the same as the
rate calculated based on mean values of the various scalars:

 (01,e2,...) # r( l, ...)

• Turbulent-chemistry interaction is best characterized by the
Damkohler number which is the ratio of characteristic flow time
to chemical reaction time:

Da=_ _ t _
rr -- gI U_

• When Da << 1 chemical reactions are orders of magnitude
slower than turbulent mixing and the influence of turbulence
on reaction can be neglected.

• When Da >> 1 chemical reactions are very fast and hence
combustion is controlled by turbulent mixing.

• At high Da we can exploit the laminar flame concept: turbu-
lent flame is comprised of an array of laminar flames (flamelets).
Hence chemical rate expressions can be those obtained in lam-
inar flames and the effect of turbulence can be characterized

through the probability density function (pdf).

• For turbulent diffxtsion flame, the pdf is usually expressed in
terms of a scalar which can best characterize mixing, e.g., the
mixture fraction. Since the rate of reaction is much higher
than the mixing rate, we can assume that the reaction system
is at equilibrium. The effect of turbulence is simply felt by the
fluctuations in the mixture fraction. The mean value of any
scalar in the flame is simply:

= so

• For turbulent premixed flames the pdf is usually expressed
in terms of a scalar which can best characterize the reaction

progress, e.g., normalized temperature:
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FLUENT Equilibrium Model

• For turbulent diffusion flames we use a two-moment beta pdf

and equilibrium data to calculate various thermo-chemical scalars
in the flame.

• To obtain equilibrium data we use the popular CHEMKIN li-
brary of SANDIA, hilly interfaced with our codes. CHEMKIN
contains data on all important gaseous fuels, combustion inter-
mediates and products as well as their properties.

• We obtain the mean mixture fraction and its variance from

their respective conservation equations:

_" Oxikat Dzi J -_- at \Szi]

• To save computational time we calculate the integrals before
the CFD calculations.

Concluding Remarks

• As of now, we provide our users with three turbulence models:

- the "conventional" k-E model,

- the ReNormalization Group model,

- the Reynolds-Stress Model.

• The Renormalization group k-¢ model has broadened the range
of applicability of two-equation turbulence models.

• The Reynolds-stress model has proved useful for strongly anisotropic
flows such as those encountered in cyclones, swirlers and com-

bustors.

• Issues remain, such as near-wall closure, with all classes of mod-

els.

• Collaborative research with ICOMP will not only serve to fur-

ther quantify applicability of turbulence models but may bring
to market new ideas in the field of turbulence modeling for
industrial flows.
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EXPERIENCES WITH TWO-EQUATION TURBULENCE MODELS

Ashok K. Singhal, Yong G. Lai, and Ram K. Awa

CFD Research Corporation
Huntsville, Alabama

N95- 27894

OUTLINE
II

• Introduction to CFDRC

• Experiences with 2-Equation Models

- Models Used
- Numerical Difficulties
- Validation and Applications
- Strengths & Weaknesses

Answers to Three Questions (Posed by Workshop
Organizing Committee)

1. What Are Your Customers Telling You?
2. What Are You Doing In-House?
3. How Can NASA-CMOTT Help?

INTRODUCTION TO CFDRC

• Young and Energetic (Turbulent) Organization, Dedicated to the
Continuous Process of Advancement and Effective Transfer of CFD
Technology

- PROJECTS
• TWO TYPES OF @_)I_[P(_I_I_[_=_[_ ' ACTIVITIES:

Research

Engineering Analysis
and Prototyping

Development

°@• i_': "
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INTRODUCTION TO CFDRC (Continued)

• Objective User of Turbulence Models
(0, 1, and 2 Equation Models, RSM and LES)

• Humble Developer, e.g. Monte Carlo Joint Scalar PDF

• Active Participant in Recent Small Eddies of Turbulence, e.g.

Stanford Endeavor: "Collaborative Testing of
Turbulence Models" 1989-1993

National Workshops at: NASA MSFC, LeRC/CMO_,
etc. 1987-1994

ASMEJFluids Engineering Division, Biathlon, Lake
Tahoe, June 1994

TWO-EQUATION MODELS USED

• Standard k-_ Model (Launder & Spalding, 1974)

• Low-Re k-E Model (Chien, 1982)

• Extended k-_ Model (Chen & Kim, 1987)

• Multiscale k-E Model (Kim & Chen, 1988)

• RNG-Based k-_ Model (Yakhot et. al. 1993)

• 2-Layer k-E Model (Rodi, 1991)

• k~_ ++ Models

• k-c0 Model (Wilcox, 1991)

++ Models with Corrections for: Curvature, Rotation, Buoyancy,

Compressibility, etc.
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NUMERICAL DIFFICULTIES

Positivity of k & E (or co) Is Not Guar_tb_d in lterative
Algorithms

• Strong Nonlinearity of Source Terms and Coupling Causes
Numerical Difficulties

• Inappropriate Specifications of _ (or co)at Boundaries or
in Initial Conditions May Also Cause Divergence

• Non-orthogonaltiy of Grids Adds to Difficulties

• Non-smooth Change Over for Two-Layer Model Hinders
Convergence

VALIDATIONS PERFORMED
I III I

• Channel and Pipe Flows

• Backward-Facing Step

• Turnaround Duct

• Swirl-Flow Combustor

• Rotating Disk Cavities

• Boundary Layers

• Jets, Wakes, and Mixing Layers

• Periodic Wakes Behind Bluff Bodies

Examples of Successes and Failures

1) Flow Around a Square Cylinder; 2) 180 ° Square Duct; 3) S-Shaped
Annular Diffuser; 4) Dump Combustor; 5) Backward Facing Step
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FLOW AROUND A SQUARE CYLINDER

Strouhal Number

Strouhal Number = fH

Uo

f = Frequency Of Vortex Shedding

H = Obstacle Height

U o = Freestream Velocity

Notes:

Time Str0uhal
Model/Expt. Period Number

Expt.

Standard k-_

2-Layer k-_

RNG k-_

7.25

7.1

7.1

7.6

0.138

0.141

0.141

0.132

°

2.

Experiments By Durao, Heitor, and Pereira (1988)

Computations with CFD-ACE
Inlet: 78H Upstream; Outlet: 22H Downstream
Grid: 120 x 80
Time Steps: Over 70 Per Time Period

Ref.: Awa, R.K., S|nghal, A.K., Lai, Y.G., "Numerical Simulation Of Periodic
and 3-Dimensional, Turbulent Flows With CFD-ACE," ASME Fluid Dynamics
Conference, Lake Tahoe, NV, June 19-23, 1994.

FLOW AROUND A SQUARE CYLINDER

Instantaneous Streamlines

Mid-Cycle

End of Cycle
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FLOW IN A 180 ° SQUARE DUCT

Computational Domain
180 _

+x/D H

"X/DH
v

0 o

Z

Experiment by Chang, Humphrey and Modavl (1983)
Computations Done with CFD-ACE on a 40x40x20 Grid

Static Pressure Along Duct Walls
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! i i
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x/D,
Ref.: Awa, R.K., Slnghal, A.K., Lai, Y.G., "Numerical Simulation Of Periodic
and 3-Dimensional, Turbulent Flows With CFD-ACE," ASME Fluid Dynamics
Conference, Lake Tahoe, NV, June 19-23, 1994.

FLOW IN A 180 o SQUARE DUCT

Mean Axial Velocity at e = 3U
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S-SHAPED ANNULAR DIFFUSER

_2,(S,f-_:.., ,..-.
,-"'-" e x

" o.g,J,-

O :Dsta m'S_w_n & Fr7(1973)
: ReTaolds S_rm Model

.... :K-E:M ode[

0.0 . Slaliou 3

_ _._R_-

o.o_ .___SL, t;on8
0.0 0.5 11 1-0

k-sModel and RNG Model Failed to Predict the Correct Location
of the Maximum Velocity Downstream

Computations with CFD-ACE; Publication Under Preparation

Confined Swirling Flow

for a Dump Combustor
ii

1": L
X,14,0.0 0.38 72.8

20-

10-

0_

O c_ :Datao[Neiadelal,(1989)
: Reynolds S_'ess Model

.......... : K._ Model

-- -- -- :RNG Model

_ ./h=1.0

_-3.0

_-6.0

xYh: 10.0
0

x/b= 18.0

0 I I I
0

Z.O 2.0 r/h 3.0

K-E model failed to preserve the vortex core strength
near center (see x/h=10 & 18)

* Computational results to be presented at
1994 ASME Winter Annual Meeting (Chicago)
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BACKWARD-FACING STEP

Sensitivitv to Grid Refinement

o_ Procure

O._*

c.
I,.15.

4.re , .

X/H " I
I

(.E-4a=l

z.[.-mq

c. I

0.1,-I

£.-o31

• ,ll,

..-_ Skin Friction

/\, .........
u'N ".,_..
_"\ "'-.....

5 n

e_ ° .

Jl

D i ) ) i i i

5 11) _ 20 _ _ 55

x_

Low-Re Model Requires >30 Nodes in the Inter Layer

Ref. : =Comparative Study of High and LowReynoldsNumber
Versions of k-e Models," R.K. Awa, C.E.Smith, A.K.
Singhal, AIAA-90-0246.

BACKWARD FACING STEP

2-Layer Model;

O(XI3
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Computations with CFD-ACE; To Be Published
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EXAMPLE APPLICATIONS

• Gas Turbine Combustors

• Liquid Rocket Engines

• Seals and Bearing Cavities

• Impellers, Inducers, and Fans

• IC Engines

• CFD Reactors

• External Aerodynamic Flows

• Plus Many More

STRENGTHS & WEAKNESSES

Strengths of 2:Equation Models

• Numerically Economical
Easy to Modify
Reasonable Ai_l_licability Within Engineering Accuracy

Weaknesses

Use of Wall Functions Requires First Grid Outside the
Viscous Sublayer, This is Difficult to achieve, a Priori

• Low-Re Approach Does Not Offer Overall Advantage.

• Two-Layer Approach Needs More Work (e.g. Smoothing)

• Reynolds Analogy Inadequate for Heat-Transfer
Applications.

• Effect of Surface Roughness on Turbulence.
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CMOTT/CP QUESTIONS

1. What Are Your Customers Telling You?

2. What Are You Doing in-House?

3. How Can NASA-CMO'i-I" Help?

WHAT ARE CUSTOMERS TELLING?

• PLEASE Don't Confuse Us,

with Additional Models and False Hopes

• Conclusions (Confusion) Over Last 15-Years
- Use k~E Model, with Wall Functions

Wall Functions, Oh No!, Never!!
Use Low-Re k~E,.: Which One?, How?? (Good Questions)

k-E Is No Good; Neglects Non-lsotropicity, etc., etc.

- Jump on RSMWagon, Nowl
it Can Take You Anywhere, Eventuallyll

Look How Great is this k-E ++

When and How to Use it? (Good Questions)

Look How Accurate is this Scheme, No Numerical Diffusion.
Don't Contaminate the Solutions with Turbulence
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WHAT IS CFDRC DOING?

• Using What is Available, in Best Possible Ways

• Listening to Both Sides (Model Developers and Users)

• Trying to Resist Peer Pressures

Struggling to Find Resources for Mundane Goals Such as
Developing Guidelines for Correct Use of Turbulence
Models

HOW CAN CMO'I-i" HELP?
i i=1 i II

• CMOTT Has Been Providing Commendable Service in the
Very Difficult Subject: Turbulence

• "Turbulence Subprogram" Should Help Further

• Additional Effort is Needed in Many Areas, Such As:

Near Wall Treatment

- Effect of Surface Roughness

- Economical Heat Transfer Model

- Documentation of Experiences in:
a) Model Robustness(InAddition to Accuracy)
b) Model Sensitivity to Grid Distribution and Boundary

Conditions

Transition Model (if Possible Suitable for k~_ Framework)
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HOW CAN CMOI-i" HELP? IContinuedl

NASA-CMO'i'i" is One of the Few Groups Sustaining
Momentum for Turbulence Modeling.

It Is In Unique (Privileged) Position for Embracing the
Challenge of Developing Specific Recommendations
(Guidelines) For:
a) Selection of Adequate Models for Different Class

of Problems
b) Correct Use of Each Model

The Task Is Difficult But Practical

Select Fewer Roads, Post Milestones, and Go Further

Move An Inch Closer to Users

CMO'i'r

, , ,Y,v,,,, ',0
0 I I I _i I I I I I

Developers Users
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PROGRESS IN SIMULATING INDUSTRIAL FLOWS USING TWO-EQUATION MODELS:

CAN MORE BE ACHIEVED WITH FURTHER RESEARCH?

Vahd Haroutunian

Fluid Dynamics International, Inc.
Evanston, Illinois

N95- 27895

BACKGROUND AND OBJECTIVES J

• Two-equation eddy-viscositymodels (TEM's) are the most costeffective

forthe purposes ofappliedCFD. Give bestaccuracy vs. costbalance.

• There isa lotof confusionabout true strengthsand limitations ofTEM's

especially that of standard k-_ model.

• We have embarked on extensivestudy ofTEM's overwide range offlows:

t> Identify true strengths and limitations of standard k-£ model.
t> Evaluate other TE1Ws.

t>Assess emerging models and novel modeling trends.

_-Identifykey areas requiringfurther research.

• This talkprovidesbriefreview of TEM's from perspectiveof applied CFD.

_-Itprovidesobjectiveassessment ofboth well-known and newer models.

Itcompares model predictionsfrom various TEIVYswith experiments.

_-Itidentifiessourcesofmodeling errorand giveshistoricalperspectiveof

theireffectson model performance and assessment.
_,Itrecommends directionsforfutureresearch on TEM's.

REMA_R_

• Many reportedpoor predictionsof TEM's are primarilydue to

combination ofimproper choiceofnear-wallmodel and over-dlffuse
numerics.

• TEM performance can be much improved form furtherresearch in:

t>Length scaledetermining equation.

_-Advanced (Anisotropic/Nonlinear)Eddy-viscositymodels.
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[ INTRODUCTION ANDBACKGROUND

O About FDI

• Over 10 years in business.

• Primary product FIDAP (Fluid Dynamics Analysis Package).

O About FIDAP

• First commercial general-purpose finite element CFD program.

• Models wide range of flows.
• Over 700 FIDAP licenses worldwide.

O FIDAP Turbulence Modeling Capabilities

• Based on two-equat/on eddy-vlscosity models:

Standard k-e model (Launder and Spalding).
Extended k-e model (Chen and K/m).

t> RNG k-e model (Yakhot, Orszag, Thaugam, Gatski and Speziale).

• Low-Re near-wall modeling based on two-layer approach:

_, Viscous sublayers spanned by single laver of specialized elements.

v* van Driest'S model used in viscous sublaysrs.
Interpolation functions based on universal flow profiles.

** Later turbulence modeling enhancements (to appear soon):
Anisotropie eddy-viscosity models.

Wilcox's k-co model.

Anisotropic version of the standard k-e model.

0 Typical Industrial User

• Design engineer.
D, Trained in fluid mechanics and heat/mass transfer.

• Familiar with range of flows of interest to his/her organization.
• NOT CFD expert.

• Little or no background in turbulence modeling.

O Turbulence Modeling Requirements of Applied CFD Codes

• Optimal balance of cost and accuracy=
Turbulence modeling overhead of critical concern.

_, Overall accuracy of+ 15% adequate for most cases.
• Consistent performance over wide range of flows:

_, Heat/mass transfer

_, 2-D and 3-D (Cartesian, axisymmetric)
_- Complex geometries

_, Transient flows

• Adaptable to a -_ide range of complex flow physics:
Low-Re effects

r_Variable density/compressibility effects
Combustion

Two-phase

** Minimum level of user inputfmtervention:

r_ No fine tuning model coefficients and/or solution parameters.
_>No physical input other than boundary and/or initial conditions.

• No geometry dependence:

_, Distance to wall and/or y* dependence.
• Stablenumerical characteristics.
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I TIYRBULENCE MODELING CONSIDERATIONS 1

O Key Modeling Issues

I-Accurate modeling ofmechanisms governing pu_,_.pu,B',pu_.

a) Pressure-scrambling
b) Body forces
c) Transport effects
d) Dissipation

2- Accurate modeling of characteristic turbulent length scales.
3- Accurate modeling of low-Re neax-wall phenomena.

O Optimal Level of Turbulence Model for Applied CFD

Second-Moment Closures (DSiVIC's) and (ASMC's)

(+) DSMC's ideally suited to modeling aspects 1-a,b,c above, however,
(-) DSMC's costly, especially in 3-D in presence ofheatAnass transfer.
(-) Geometry dependence in current pressttre-scrambling models.
(-) ASMC's perform erratically (1-c above not well modeled).
(-)ASMC's numericallylessstable(stiffequations).

Two-Equation Eddy-Viscosity/Diffusivlty ModeLs (TEM's)

(+)Least costly.

(+)No geometry dependence (exceptsome low-Re TEM's).
(+)Numerically more stable.

(-)Conventional TEM's not suitableformodeling effects1-a,l-b,&l-e.
(+)Room forsignificantimprovement in predictingeffectsof complex

strainand anisotropythrough the combined use ofimproved length
scaleequationsand advanced eddy-viscositymodels.

(-)Transport effects(1-c),however, cannot be directlypredicted.

LENGTH SCALE DETERMINING EQUATION

O THE STANDARD k-_ MODEL

where,

G pu_u t +

and,

c_ = 0.09, c t = L44, c 2 = 192, o k = 1.0, o ¢ = 1.3

_- Remarks on standard k-s model:

_,Use ismade ofBoussinesq's"isotropic"viscositymodel.

_,Fine scaleisotropyisassumed in modeling e equation.

Is high-Re model. Must be used with suitable near-wall sub-model.

Many reported poor predictions are due to improper choice of near-wall
model, mesh density, discretization scheme and boundary conditions.

_, Model predicts much better than commonly believed, if used properly.

It does however have its shortcomings in predicting di_cult flows

involving strong anisotropy and/or non-equilibrium effects - it tends
to be over-diffuse. It predicts flatter flow profiles, shorter recirculating

zones, and occasionally does not predict subtle separation bubbles.
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] LENGTH SCALE DETERMINING EQUATION I

O THE EXTENDED k-_ MODEL OF CHEN AND KIM

Employs modified e equation containing extra generation term.

=-Rationale isthatin additiontoturbulencetime scalek/_.there is

further time scale pk/G characterizing response of e to mean strain.

D_ b rt, _ e G2 £2p--= _I(I.t +--_--]+ c, --G + c3---czp--

Dt _x, Lt o,) _x,j k pk k

% =O.09, G = 1.15, c 2 =1.9, c3 = 0.25, o k = 0.75, a, = 1.15

Remarks on extended k- ¢ model of Chen and

_-Ishigh-Re turbulence model. Needs near-wallmodel.

_>Gives similarpredictionsto standard model in equilibrium flows.

_>We findChen and lCam's(1987)recommended model produce

predictions that are too under-diffuse in confined flows.
We have tuned constants c, = 1.35 and c, = 0.05 to improve performance

_> Revised model gives better results for some well-known benchmark

flows, but improved predictions over standard model are not realized
consistently.More experienceand possiblyfinetuning isneeded.

LENGTH SCALE DETERMINING EQUATION

O THE RNG k-¢ MODEL

• RNG k-e model has undergone two major revisions.

• Latest versiondue to Yakhot, Orszag, Thangam, Gatski,and Speziale

 :NLt o,JNJ

_
• K = l£/-- + _ I"_=-_ _

t,_s _x,JOx__xs l+_n 3 t

k s=_/-_l_t t11-- s--;
£

c_ = 0.085, c I = 1.42, c 2 = L68, o k = o_ = 0.7179,'q o = 4.38, _3= 0.015

• Above versionishigh-Re turbulencemodel. Needs near-wallmodel.

Most testingofmodel has been done with simple near-wallmodel.

Our testingof model with more accuratenear-wallmodel indicates

that RNG model isoftenunder-diffusivein internalflowsand can be

very over-diffusivein some externalflows.

We have tuned model constantsand obtained betteroverallpredictions.

c, = 0.0865, cj = 1.45, c 2 = 1.83, o t = 0.8, o c = 1.15,110 =4.618,[3 = 0.17

_- Revised model gives better results for some well-known benchmark

flows, but improved predictions over standard model are not realized
consistently.More experienceand possiblyfinetuning isneeded.
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] LENGTH SCALE DETER_MINING EQUATION ]

O Additional Remarks on RING k-e Model:

• Interesting development though no major breakthrough.

• Most model constants are predicted from RNG theory.

• In applying RNG theory it is assumed that turbulence field has very
wide suectrum and that _nertlal sub-range is isotrooic.

• Values of model constants predicted by RNG theory are approximate
owing to simplifying assumptions made in applying P_G method.

• Model predictions critically dependent on additional term R.

• The R term reflects proposed contributions from fine scale anisotro]_¥.
• The R term is not derived and modeled using RNG theory.

• The R term has essential similarities with extra term in e eq'n
of extended h-e model of Chen and IGm.

• Latest model does not predict yon Karman constant_

• The most notable fact about the RNG k-¢ model of YOTGS is

that it challenges the notion of fine scale isotropy of turbulence

Thus e (and consequently the characteristic turbulent length scale)

is assumed to be significantly influenced by the fine scale structure.
These effects are heuristically modeled via the time scale ratio _.

_, It is interesting to note that the assumption of fine scale anisotropy
used in modeling R conflicts with notion of a wide and isotropic
turbulent spectrum used in applying RNG theory to rest of model.
It is more likely that the turbulent length scale is influenced strongly

by large scale anisotropy _ characterizecl by the anisotropy
tensor a_

Anisotropic eddy-viscosity models can provide estimates of acwhich

can be used to design improved length scale determining eqn's.

[ ADVANCED EDDY-VISCOSITY MODELS (Beyond Boussinesq)

O Anisotropic Eddy Viscosity Models (AEVM's)

• There has been renewed emphasis in developing AEVM's.

• Lead to better approximations of the normal and shear stresses and
therefore turbulence anisotropy effects.

• In addition to more accurate modeling of p_, AEV_s could

potentially be used to improve modeling of:
_, Length scale determining eq'n.

Generation rate of turbulence energy.

• Examples of AEVM?s are:
Lumely (1970)

_, Speziale (1987)
Yoshizawa (1984), DIA
Rubinstein and Baron (1990), RNG
Taulbee (1992) and Speziale (1993), derived from DSMC's

Launder (1993)

• Remarks:

t>Potentialofmodels have been demonstrated usingsimple tests.

t>Improvements in accuracy oftenof second-orderin magnitude.

Not been extensivelytestedespeciallyforswirlingflows.

_,Anisotropicmodels not yet extended to turbulentheat/mass fluxes.

We are pre_sentlyinvestigatingAEVM's ofSpeziale(1987) and

Launder (1993).
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THE LOW-RE NEA_-WALL MODEL j

0 WaLl Function Models

Produce over-d£ffuse solutions in off-equilibrium boundary layers.
Often fall to predict separation or vortex shedding.

• Unfortunately still in extensive use in applied CFD codes.

O Specialized Finite Element Model (FI]DAP)

• Is essentially two-layer model.

• Avoids Rue near-wall mesh via use of one layer of specialized elements.
• Employs van Driest's low-Re _g-length model in near-wall layer.

• Combines low cost of wall function models with accuracy of two-layer

models.

• y+ dependence confined to single layer and transparent to tu_r.

Remarks:

• Most ofhistoricaltestingand verificationof TEM's has been done using
wall functions.The excess diffusionhas leadtomuch confusionin

• Proper assessment ofTF_a_s requiresat leasttwo-layermodels.

Wall functionapproach issimply unacceptable forappliedCFD.

IMPACT OF DISCRETIZATION ERROR

O Sources of Discretization Error.

• Grid refinement (gridconvergence).

• Location of computational boundaries (e.g.,outlet,inlet,entrainment).

• Choice of discretization scheme in space and time.

Remarks:

• Effectofdlscretizationerrorhas received lessattentionin turbulence

model development and testing.
• Most serioussource oferrorresultsfix)mdiscretizationofadvection

terms (i.e., the upwinding scheme).

• Common but dangerous upwinding strategy is used in many CFD codes:
t>Use accura_ unbounded scheme in mean flowequations.

t>Use inaccuratenumerically _ffuse scheme in turbulence equations.

_,Overallscheme isstablebut ol=_enhighly diffusive.

_,Most ofdevelopment and testingof turbulence models has been done

using above upwinding strategy.

In our computations we employ the accurate streamline upwind

(SLO scheme in both mean and turbulence equations.
Even more accurate schemes are availablewhich are based on

Petrov-Galerkinfiniteelement formulations.

• Accurate schemes r_ustbe used in both mean flowand turbule_ac_eq's,
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I _ICAL R_SI/LTS I

O Free Jets

• Round jet

• Plane jet

O Internal Flows with Separation

• Flow past backward facingstep(Kim et.al)

• Flow past step in channel with diffuserwall (Driver and Seegmiller)
P-Flow in pipe expansion (Szszepura)

O Transient Flow (Vortex Shedding)
I_ Flow past square prism (Lyn)

O 3-D Flow

Flow past passenger carmodels

• Five setsof model predictionsaxe presented:
_,Standard k-emodel

_ded k-e model (original)
Extended k-e model (revised)

RNG k-e model with (original)
I> RNG k-e model with (revised)

FREE JETS

The Submerged Plane and Round Jets

Experiment
Standard k-s model

Zxtended k-e modei (original)
E_ebended k-e model (revised)

RNG k-e model (original)
RNG k-e model (revised)

Plane Jet Round Jet

_/d_ _ error dS/_ i :_ error
=0.105 =0.095

0.104 -1 0.112 18

0.10 -5 0.10 5
0.102 -3 0.104 9.5

0.131 25 0.157 65

0.101 -4 0.113 19
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TURBULENT FLOW OVER BACKWAP, D FACING STEP

Kim et al Test Case: Re = 45000

R _Teriment
S_,_J_rd k-e model
_ended k-e model (original)

_ended k-e model (revised)

RNG k-e mode! (or%_nal)
RNG k-e model (revised)

XR % error
7.0 _+0.5

6.5 -7.1

8.4 20.0

7.1 1.4

7.5 7.1

7.46 6.6

TURBULENT FLOW OVER STEP IN CHANNEL WITH
DIFFUSER WALL

Driver and Seegnziller Test Case: Re = 36000

:_eriment
Standard k:e model

Extended k-e m.odel (original)
Extended k-e model (revised)

RInG k-e model (ori_,i_ A]_

RNG k-e model (revised)

An_
0 d____2___ees 6 degrees

X R % error X. % error
6.2 8.1

5.3 -14.5 6.6 -18.5

6.6 6.5 9.55 17.9

5.76 -7.1 7.4 --8.6

6.17 -0.5 8.33 2.8

6.11 -1.5 8.33 2.8
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TURBULENT FLOW IN PIPE EXPANSION

Szczepura Test Case: Re = 890,000

Experiment
Standard k-e model

Extended k-e model (original)
Extended k-e model (revised)

RNG k-_ model (ori_ml)
RNG k-e model (revised)

X R /%error
9.51

9.59 0.9
12A4 30.8
10.6 11.5
11.35 19.5

2011.39

TURBULENT FLOW PAST SQUARE PRISM

Lyn's Test Case: Re = 21400

Experiment

Strouhal No. Cd

0.132+ 0.035 = 2.0 N__

Standard k-e model 0.128 1.68 0

0.131 -0.07

0.135

0.133

0.133

Extended k-e model (ori_inaI)

Extended k-e m.,ode, l (revised)

2.56

2.014

2.38

1.9
RNG k-e model (ori_nal)
RNG k-e model (revised)

0

-0.07

0
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l CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH J

For applied CFD, TEM's strike balance between accuracy and efficiency.

• The use ofinadequate near-wallmodels and over-diffusenumerical

schemes obscures trueperformance characteristicsofTEM's. And thishas
lead to much confusioninevaluationofTEM's.

Consequences ofusing betternear-wallmodel and accurate numerics are:

_,Standard k-e model performs much betterthan commonly believed.

Extended k-e model with original set ofmodel constants produces

under-diffusepredictions.

J> RNG k-e model with original set of model constants gives predictions
that can be both under_tiffusive or over--lye depending on flow.

E>The extended and RNG models with revised set of medel constants

perform better than with original set of model constants.

Newer models are quite promising, but do not yet perform consistently
better than standard k-e model.

• Significantadvances in'ITEMcapabilitiesmay potentiallyresultfrom

furtherresearch in two key areas:

E>Advanced constitutive-typelaws forthe Reynolds stresses:

•AEVM's appear tobe bestcandidates.

>Improved length scaledetermining equation:

• Better modeling ofoff-equilibriumeffects.

* Better modeling oflarge-scaleanisotropyeffects.
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TURBULENCEMODELINGNEEDSOFCOMMERCIALCFDCODES:COMPLEXFLOWS
IN THEAEROSPACEANDAUTOMOTIVEINDUSTRIES

Bizhan A. Befrui

adapco

Melville, New York

N95- 27896

CONTENT OF PRESENTATION

• STAR-CD: COMPUTATIONAL FEATURES

• STAR-CD: TURBULENCE MODELS

• COMMON FEATURES OF INDUSTRIAL
COMPLEX FLOWS

• INDUSTRY-SPECIFIC CFD DEVELOPMENT
REQUIREMENTS

• INDUSTRIAL COMPLEX FLOWS:
APPUCATIONS & EXPERIENCES

- FLOWIN ROTATING DISC CAVITIES

- DIFFUSIONHOLEFILM COOLING

- INTERNALBLADECOOLING

- EXTERNALCAR AERODYNAMICS

• CONCLUSION: TURBULENCE MODELING
NEEDS

[ STAR-CD: COMPUTATIONAL FEATURES J

BODY-FITTED NON-ORTHOGONAL
COORDINATE SYSTEM

• UNSTRUCTURED COMPUTATIONAL MESH,
DIFFERENT CELL TOPOLOGIES, IMBEDDED
MESH REFINEMENT, DISCONTINUOUS
MESH INTERFACE, MOVING BOUNDARY
AND INTERNAL INTERFACES

• PRIMITIVE VARIABLE, SELF-ADAPTIVE
ELLIPTIC-HYPERBOLIC PRESSURE
CORRECTION METHOD

• COLLOCATED-VARIABLE ARRANGEMENT

• EULER-IMPLlClT TEMPORAL INTEGRATION

• UD, CD, LUD, SFCD SPATIAL
DISCRETIZATION, WITH BLENDING
CAPABILITY
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[ STAR-CD: TURBULENCE MODELS

• TWO-EQUATION MODEL

- STANDARD k-_ WITH CORRECTIONS FOR
BULKD1LATATION AND BUOYANCY

- HIGH R_NOLDS NO. RNG BASED k-_
MODEL

• TWO-ZONE (TWO-LAYER) MODEL

- HIGH REYNOLDS NO.: k-e VARIANTS

- LOW REYNOLDS NO.: k-t VARIANTS,
PRANDTL MIXING
LENGTH MODEL

STAR-CD: TURBULENCE MODELS

• REYNOLDS STRESS TRANSPORT MODEL"

- TRANSPORT EQUATIONS FOR
CARTESIAN STRESS TENSOR IN NON-
ORTHOGONAL COORDINATE SYSTEM,
ON NON-STRUCTURED MESH

- LAUNDER, RODI, REECE (1975}
FORMULATION WITH LAUNDER (1989}
MODEL CONSTANTS

- GIBSON & LAUNDER (1978) WALL
REFLECTION MODEL
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7,S=p g4

P.__RAPH PLOT

_ RSmodel

_ KE model
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asep_
ROTATIONAL SPEED

RPM

PSYS=_

LOCAL MX= .4226E._OS

Z
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2s_

PRESSURE

N/M-2

LOCAL MX- 329.9

LOCAL UN- -2937

410.0

_00.7

351.3

292.7

234.O

2O4.7

17S.3

1,4_0

116.7

Err.33

S¢OO

28.67

-3000

0.S UJO DIFFERENCING

TURBULENCE MOOE]. KE - UPPER, RSM -

COMMON FEATURES OF INDUSTRIAL
COMPLEX FLOWS

- THREE DIMENSIONAL WITH MULTIPLE FLOW

"COMPLEXITIES"

- BODY-FORCE RELDS

- STREAM SURFACE CURVATURE

- STRONG PRESSURE GRADIENTS

- COMPRESSIBILITY EFFECTS

- LAMINAR-TURBULENT TRANSITION

- COMBUSTION, SHOCK, MULTIPHASE, NON-

NEWTONIAN

. LARGE SCALE DOMAIN AND COMPLEX
GEOMETRIC CONRGURATION

- IRREGULAR, UNSTRUCTURED

• SPATIAL RESOLUTION DIFFICULT TO ACHIEVE

ON O(10 s - 10 s) MESH CELLS

• INSUFFICIENT AND UNCERTAIN
EXPERIMENTAL DATA FOR TURBULENCE
MODEL VALIDATION/IDENTIFICATION OF

DEFICIENCIES
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INDUSTRY-SPECIFIC CFD DEVELOPMENT

REQUIREMENTS

• AUTOMOTIVE INDUSTRY

- EFFICIENT COMPLEX_EOMETRY, MOVING-BOUNDARY
CAPABIMTIES

- MEMORY/SOLUTION PERFORMANCE FOR LARGE
. SCALE DOMAIN CFD SIMULATION

- DIAGNOSTIC/COMPARATIVE EVALUATION
OBJECTIVES

- GEOMETRIC FIDEMTY AND SPATIAL RESOLUTION ARE
PRIMARY ACCURACY FACTORS

• AEROSPACE INDUSTRY

- REGULAR AND SMALL-SCALE FLOW DOMAIN (BENCH-
MARK EXPERIMENTAL MODELS)

- DESIGN/PERFORMANCE OPTIMIZATION OBJECTIVES

- NUMERICAL AND TURBULENCE MODEL ACCURACY
IMPORTANT

- REQUIREMENTS

- HEAT TRANSFER

• LOW REYNOLDS NO. FLOW

• BODY FORCE FIELDS
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EXTERIOR TUBE
REMOVED)

OI_GINAL PAGE IS
OF PO0 QUALrrY

SYMMETRY PLANE

MOWI_WALL
SIMULATION OF GROUND
MO11ON RELATNE TO
VF..HK_ (40 _)

MOVTNG WALL
SIMULATION OF ROTATING 1IRES
(371RPM)

INLET
SIMULATION OF VEHICLE
TRAVELING AT 40 kph
(T. 30C, P - 100 kPa)

FIGURE 1: EXTERIOR BOUNDARY CONDITIONS FOR W202 40 kph ANALYSIS
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1,1ttlGII_L, I_GIi IS

11Dec 93

OCl'_ M AGNWUDE

rT'ER. 140

LOCAL MX= 50.81

_ 1425

12.00

10,80

g.O00

_' 7.50O

&750

4.SO0

3.750

W202 UNDERHOOD FLOW ANALYSIS

CASE 3:40 kph SIMULATION

Velo¢_ near the surface of ¢,e ,,lt'Jde.

w202 UNDERHOOD FLOW ANALYSIS

CASE 3:40 kph SIMULATION
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APPLICATIONS & EXPERIENCES

_PPLICATION FLOW
(DATA) COMPLEXITY

ROTATING
DISC CAVITY 1

DIFFUSION
HOLE FILM
COOLING 2

i• FORCE FIELD
• WALL

EFFECT

• JET-CROSS
FLOW

• WALL
ANISOTROPY

TURBULENCE

MODE L
• k-E
• 2 LAYER k-t

• k-¢

• RNG, k-E
• 2 LAYER k-l

FINDINGS T.M. NEEDS

• EKMAN LAYER
RESOLVED

• FAIR
PRESSURE
DROP

• EXCESSIVE
E.V.

• JET
SEPARATION
SENSITIVE TO
MESH
TOPOLOGY/
RESOLUTION

• POOR
SPANWISE
SPREAD

• RSTM +
SUITABLE
2 LAYER

• LOW Re
RSTM

• RSTM +
SUITABLE
2 LAYER

• LOW Re
RSTM

1GRABER et al (1987)
2GOLDSTEIN et al (1968), LIGRANI et al (1992)

COMPRESSOR DRUM TEST RIG STAR-CD CONJUGATE HEAT TRANSFER MODEL

Dlsk5

Axis of RotaUon _,_

]80



HALF-CAVITY 'TEST MODI_I.: MESH IS TYPICAL FOR MULT-CAV1TY MODEL

,_sk dm (r = 11.0 In,)

coolant injection

_" location (in_et)

symmetry plane

!!!!:::ii:::i!i::i!l

I :::::::::::::::::

iiiiiiiiiiiiiii

_ms_t D_m _sl Rig _Id Flow Be_ A_I_

Se_ Flow

14..Jun-93

VB.OCrW

COMPONENTS U W

FTF-_EC

PSYS= 2

LOCAL MX= _.44

LOCAL MN= 0.2792E,.01

"PRESENTATION GRID"

36.44

33.M

31.24

28.64

28.04

_L44

20,84

1 B,24

'13.03

10.43

7.831

S.230

2._

0.2"/'_E-01
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D;sk $ Face (z - 0.25 _.)

7_

Compmss_ Drum T_ FUg Cok:l Flow Bonc_srk A_dys_

Secon0ery Row _ Cavny 2

Veloc_/Vectors at r = 7.40 indus

14-Jun-93

VELOCrr'Y

COMPONENTS U w

FT_EC

PSYS- 2

LOCAL MX= 22.30

LOCAL MN= 0.4491

22.3o

21.21

20.12

19.08

17,g_

18.84

15.75

14.65

13.M

I?.47

11.38

10-28

g.lgl

8.om

7.o(_

5.913

4.02o

3.T£/

2,635

1.542
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CAVITY 2: PRESSURE DROP
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,, i/

//

I
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l_,menslo_ess I:_dus Ratio

/

1 J

lKe t_oo
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STAR-COModel

• Te_ Data
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CAVITY 4: PRESSURE DROP
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i

i l f i! l I l i l f

oJ clio= O.lne _ 1,4oo ¢lll _ ¢_0 _

_a_dess Fl_us Ra_o

Dirner_oNess Pressure Drop

-- STAR-CO Mod_

• Test Data

-- Forced Vortex

-- Free Vortex

1.(X)0

1.000

1.000

ANGLE

.000

D_I"ANCE

84.234

_E'RTL_

2_8.461

78.577

118.614

-:_lt DDEN PLOT

_ mesh. M = 0.5. pipe grid abutting p_.te grid.

Mesh = 330000 fluid ceils

Two-Layer mesh
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_;Jul 94

VEL COMP VW

M/S

LOCAL MX- 36.18

LOCAL MN- .O000E+O0

28,50

2"L_O

25.5O

24,00

22.50

21.oo

IILO0

IESO

..... 15.00 '

"--- 1_50

-- 12.00

-- 10.50

-- 9,000

-- 7.500

-- $.000

-- 4,500

-- 3.000

-- I__00

-- .O000E¢O0

Y

#d=B

x/d=4

xJ_ = O.

CFD Dtcrele Hole Rim Cooing VedlP,,a'Jon Study

Slmulallo_ of experiment ot Gotdsle_ et. al. I 1_81 ;Blowtng ratio M ,0.5

Temperature oontou_ on spanvdse planes ; 2-1ayer model.

#d._0

_l-lS

x/d= 12

184



I m
I
I

m
.Too

c

o

I

n

!

I

v

8

$
$

.Iol

+ i

e_q:_rirnenlal._d

• 0.0

• 0 0.25

• 0.5

O 0.75

• 1.0

_; . A 1.5

0 -- 0+0

0.25

_ -- 0.5
o -- 0.75

• q ,,,,. • 1.0

k • -- 1.5
\

° I

n

u =-';'_-- _'x ---]a .... "--'_-- "---F _" "--'F_ I

um _xo
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EXPERIMENTS OF GOLDSTE. IN El" AL,1968

COMPARISON OF RIM COOLING EFFECTIVENESS

M = 0.5 : 2 Layer mesh.
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APPLICATIONS & EXPERIENCES (cont'd)

APPLICATION

(DATA)

INTERNAL

BLADE

COOLING 3

EXTERNAL
CAR AERO-

DYNAMICS 4

FLOW

COMPLEXITY

• FORCE FIELD

• B.L.
DISRUPTION

• B.L.

STRUCTURE

INTERACTION

• COMPLEX

WAKE

TURBULENCE
MODEL

• k-c

• k-E

• RNG k-_

• 2 LAYER k-t

FINDINGS

• DEPENDENCE

ON MESH
RESOLUTION

• GOOD AP, h

• DEPENDENCE

ON MESH

RESOLUTION

• GOOD CD
• POOR LIFT

T.M. NEEDS

• RSTM

• LOW Re

RSTM

3GE AIRCRAFT ENGINES [ABUAF & KERCHER (1991)]

410 FORD 1/4 SCALE MODELS IN WIND TUNNEL TEST [WILLIAMS et ai (1994)]
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_xugs4

PRESSURE

N/M"2

LOCAL MX,= .44,_/E*06

LCCN. MN--.2719E+06

6sepo4

MAGNITUDE VELOCITY

M/SEC

PSYS- 2

LOCAL MX- 314.6

LOCAL MN- 4.850

• PRESENTATION GRID"

3iS.0

294.3

273.7

253.0

101.0

170.3

148.1'

12g.0

10e,3

.-- 87.tr;r

67O0

46.33

25.8/

S._0
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29._ug 94
H. T. COEFFICIENTS

W/SCL METER- K

LOCAL MX= .1092E+05
LOCAL MN- ¢O00E*00

.IO_

.IO14E_

8584.
7804.
7023.
(S243.
5442.
4682.
3002.
3121.
2341.
1561.
78O.4
._(_E,I.0G

3OO

2S0

2_

Hut

150

100

LE_tNG EDGE CtU_I, CEL

I! °

a Sxp.A_I.

• CR_ Coanm Avg.

O CFD Rne A'_i.

]
ROOT
(NLET

FLOW
EB06TURH

50 .----_ _ n, " " n n n nlo 9 a _ _ _ _ _ 2 I o
x/O

m

•CFD BLADE AND LEADING EDGE MODELS

• Marlnaccio (198g,1990a,1991)
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THIRD GRtD REDUCTION (3:1)

SECOND GRID REDUC'RON (2:1)

WAKE REGION

FIRST GRID REDUCTION (2:1)

NOTCHBACK WIND TUNNEL AERODYNAMIC STUDY MODEL

COMPLETE MODEL DOMAIN

DGRID

WIND TUNNEL AERODYNAMICS STUDY OF NOTCHBACK'rEST SHAPE

KE RESULTS- KE TURBULENCE MODEL WITH LUD

VELOCITY MAGNITUDE NEAR THE VEHICLE

MAGNITUDE VELOCITY

M/S

LOCAL MX= 53.46

LOCAL MN= 0.0000E+O0

• PRESENTATION GRID"

35.oo

34.OO

33.00

3=.OO

31.00

3O.00

29.00

2L00

2"/.00

26.00

25.00

24.00

23,00

22.00

21,00

20.00

19.00

18.00

17.00

15.00

ViEW FROM REAR
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CONCLUSIONS: TURBULENCE MODELINGIMMEDIATE NEEDS

• NEAR-WALL TURBULENCE

- ECONOMICAL. ROBUST LOW REYNOLDS
NUMBER 2 EQ. EVM's AND RSTM

- A GENERAL AND VERSATILE NEAR-WALL
TREATMENT FOR RSTM

• RSTM MODEL

- ALTERNATIVE CLOSURE OF THE WALL
REFLECTION COMPONENT, WITHOUT NEED OF
WALL TOPOGRAPHY pARAMETERS

• EDDY-VISCOSiTY MODELS

- EXTENSION OF THE NON-LINEAR k-¢ TO
INCORPORATE FORCE-RELD EFFECTS

• BENCHMARKING

- A REUABLE DATABASE OF BENCHMARK SET OF
REPRESENTATIVE COMPLEX FLOWS

- BENCHMARK PERFORMANCE CLASSIFICATION
OF VARIOUS EVM's (k-s, k_, RNG AND NON-
LINEAR k-c, MULTISCALE EVM's) AND RSTM
CLOSURE VARIANTS

CONCLUSIONS: TURBULENCE MODELINGPROGRAM NEEDS

• A LARGER VIEW OF THE RSTM DEVELOPMENT
TOWARDS IMPLEMENTATION IN GENERAL

COORDINATE, COMPLEX GEOMETRY DOMAIN,

UNSTRUCTURED CFD METHOD

• A BROADER APPLICATION OF DNS TO
COMPLEX FLOWS TO ASSIST TURBULENCE
MODEL DEVELOPMENT/OPTIMIZATION

.=WELL-POSED EXPERIMENTAL DATA,
OBTAINED IN THE ORIGINAL OR REDUCED
SCALE MODEL OF THE INDUSTRIAL

COMPONENT FOR CFD VALIDATION

COLLABORATIVE INDUSTRY-CFD
RESEARCH/DEVELOPMENT PROGRAMS FOR
EXPERIMENTATION - CFD VALIDATION

(CALIBRATION) FOR SPECIFIC INDUSTRIAL
APPLICATIONS
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TURBULENCE REQUIREMENTS OF A COMMERCIAL CFD CODE

J.P. Van Doormaal, C.M. Mueller, and M.J. Raw

Advanced Scientific Computing Ltd.
Waterloo, Ontario, Canada

N95- 27897

Outline

• Profiles
- ASC

- Application

- Client

• Needs
- Clients'

- ASC's

• ASC Directions

- Research

- Development

- Products

• How Can CMOTT Help?

i93



Profile of ASC

• Established in 1985

• Components of business

- development

- applications

- licensing and service

• Geographic markets

- North America

- Europe

- Pacific rim countries

Application Profile

Rotating machinery components

- hydraulic turbines

- pump

compressors

turbines

stators

wicket gates
- scrolls

- volutes

- inlets and diffusers

- seals

- stage
- rotor stator

194



Application Profile cont'd

• Combustion

- gas turbine combustor

- coal fired boilers

- gasification

- fire suppression

- emissions reduction

- safety

• High speed external- ballistics

- explosively formed projectiles

- finned projectiles

- sabot discard

Heat transfer

- turbine cooling
- nuclear reactors

- heat exchangers

- electronics system cooling

Typical uncertainties

- geometry

- initial and boundary conditions
transient effects

transition

- limitations of physical models
- numerical error
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Client Profile
mlqr r TF

Companies or divisions

-industrial/manufacturing/research

10 - 200 employees

- limited or no access to high

performance computing

Users

- design and/or analysis

- < 3 people

- network ofengineering workstations

- turnaround time in less than a day

for analysis, hours for design

Clients' Needs

Needs are most readily identified through typical

questions from clients.

• General
I am using k-s or two-layer or k-e, or RNG .... what does it
mean to my calculation? Tell me in words what the deficiencies
of the model means for my application?
What is the relative price/performance of the various turbulence
models?

- Has the model I am using been validated for type of flows I am

trying to model? If so, when, where, how ... ?
- How well does the model handle the interaction between

turbulence and rotation, curvature, adverse pressure gradients,

separation, swirl, bouyancy, extinction, droplets and particles,
anisotropies ...?
How can 1use Navier-Stokes solvers for design? Can I tune the-
turbulence model to suit my needs? If so, what are the

appropriate settings for my application?
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Clients' Needs cont'd

• Grid

- I don't have access to high performance computing, I
don't have any more time, I have a coarse non-

orthogonal mesh, is my CFD result useful?

I have just made my grid finer, why should I have to

worry about whether y+ is in a given range?

• High speed flows

- i am solving a flow with many speed regimes including
low speed separations and shocks, why do turbulence

levels become unphysical as the grid is refined through
shocks?

How should experimental data be compared to results
from time or Favre averaged calculations?

Clients' Needs cont'd

Combustion

- Which of the many different combustion models in
combination with which turbulence model works best for
my application?

- How appropriate is the single scale implicit in the
turbulence model for the combustion model?

How can the Bousinesq assumption be valid in the

presence of counter-gradient diffusion?

How important are turbulent fluctuations to my problem?

If I had all the mean flow and fluctuating components of
the the turbulent flow, how can the effects of stretch and

curvature on the instantaneous flame front be modelled.

- Can extinction due to vortex stretching be modelled?

- What is the influence of the flame front on the turbulence?
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Clients' Needs cont'd
im

Calculated pdf models

If I use a more detailed chemistry model - like a pdf

transport model - how much Improvement can i expect in
the results for my application? How can I measure that?

- is it the case that the results for my application will not be
sensitive to the shape of the pdf? If not, then why should 1
incur the costs associated with a pdf transport equation.

- i am solving a pdf transport equation, how much are the
results dominated by the limitations of modelling of the

diffusion transport term?

Clients' Needs cont'd

Flamelet models

- ! am using a flamelet model in modelling my gas turbine
combustor, but in some regions of the combustor the
model is not strictly appropriate - can any of the results
be used? If so, how much?

In some models like the flamelet model, it is assumed
that the turbulent time scale is inversely proportional to

the velocity gradient of a "laminar" model flame. What is
the validity of this assumption?

- How sensitive are my results to the assumption of
statistical independence of the quantities in a joint pdf?
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ASC's Directions
I

• Develop in-house model expertise

two-layer model

alternative two-equation models
second moment closure models

expanded EBU models

flamelet model

• Develop in-house expertise applying models

turbomachinery
combustion

heat transfer

• Promote high performance computing

- parallel computing

How Can CMO'I-r Help?

Model improvements to
address between
turbulence and

rotation

- curvature

- adverse pressure
gradients

- separation
- swirl

- bouyancy

- droplets and particles

- anisotropies ...

as well issues related to

extinction

trace species

vortex stretching

flame fronts

- time and length
scales

..,

• Great, but is this what

users really want?
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How Can CMOTT Help? cont'd
III

• Curator of information on existing

models

- define

- validate

- process

- educate

as an independent agency

How Can CMOTT Help? ,,cont'd
I

Define models

unified conceptual framework

establish baseline for various

models

- set context for model improvements

- for each model

> document derivation

> identify assumptions
> clearly state implications of assumptions

> separate physics from numerics

20O



How Can CMOTT Help? cont'd

Validate models

- fundamental flows

> validate assumptions

- benchmark problems

> select real engineering problems

relevant to identified applications (in
propulsion)

> review selection of benchmark on
regular basis

experimental data

> collect and re,#iew existing data

> define new experiments

> review.quality of resulting data for
validation of models

How Can CMOTT Help? cont'd

Process data

collect

- distil

- review

- interpret
- describe

- compile
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How Can CMOTT Help? cont'd

Educate

- document

- publish

- workshops

- seminars

short courses

- market

Summary

Provide information so users, for their

applications can:
• make an educated choice of model

• understand how to appropriately use

existing models

• move forward with existing models and

technology

• understand implications of

improvements to existing models
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SECOND-ORDERCLOSURESFORCOMPRESSIBLETURBULENCE

J.L.Lumley,S.Savarese,andC.C.Volte
MechanicalandAerospaceEngineeringDepartment

ComellUniversity
Ithaca,NewYork

N95. 27898

[ 0 U TLZNEJ

• II. Project DescriptionJ

• [II. Turbulence ModelingJ

• lIII. Computational Engine / Resultsj

[ FUTURE WORK J

II. PROJECT DESCRIPTIONJ

1. Flows of Interest

2. Motivation

3. Method
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Schlieren photograph of a shock-wave turbulent boundary-layer interaction

M=O.90 Re=1,750,000 [Liepmann]

L2.MOTIVA__
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• Physics

- Boundary Layer Separation & Wall Heat Transfer

- Spreading rate

• Modeling

Account for Compressibility Effects
on Turbulence

• Numerics

Compare 1-point Closures on identical Solver

1.3. METHOD

• 1-Point Closures: from EVM to Second-Order Closures

• Dynamical Compressibility Effects

• 3D / Finite Volume Approach
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i_ q•TURBULENCEMODELIN

Turb. Model

Complexity

Physical

Complexity

1. Closure Levels

2. Compressibility Effects

3. Shock Wave Interactions
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II.1. Closure Levels

1. EVM Mixing-Length

(Baldwin-Lomax)

2. EVM Multi-Equation

3. Second-Order Closure

(Shih and Lumley)

11.2. Compressibility Effects

1. New Physics & Averaging

2. Models
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II.2.1. New Physics

(Turbulent Kinetic Energy Sink)

- < rijui,j >-_ lid -- Cd-- ¢s

4 d2• _d=(us+_u)< >

• Vld --< pd >

II.2.3. Turbulence Modeling

(Zeman, Sarkar et al., Yoshizawa)

• dilatation dissipation:

- Sarkar et al.

- Zeman

4 d2cd=(us+2u)< >

(asymptotic analysis)

(Shocklet model)
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• pressure-dilatation correlation:

174 --< pd >

- Zeman (acoustic model)-

- Sarkar et al.

(DNS & asymptotic anaJysis)

[.6 i + , " i _ :

L4 DNS

I _odel I l

0-8 .,

05 ' , 1 _ _ [ , , . +

5 7.5 to f_ J_ x7.5 20 _,5
x_lk_o

Response of turbulence kinetic energy to the passage through shock

209



II.3. Shock Wave Interactions

1. Experimental Observations

2. Physics

3. Modeling

II.3.1. Experimental Results

• Oscillation increases with Shock Strength

(Dolling)

• Oscillation increases with Separation Region

• Normal Stresses Preferentially Amplified

(Delery et al.)
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11.3.2. Physics

Oscillation Caused by (?):

• "Breathing" of Separation Region

• Vortex Bursting

in Incoming Boundary Layer

(Dolling)

II.3.3. Shock Oscillation Modeling

• Parametrized Source Terms

in Normal RS Evolution Equation

(gradient activated)

• Separation region Extend
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fill. COMPUTATIONAL ENGINE I

1. Numerical Method

2. Turbulence Models

3. Validation Procedure / Results

Initial Code: flo103

(A.Jamesq.n L.Martinelli,..
Princeton)

1. Geometry.
C-mesh

2D

2. PDE Solver

spatial discretization: FV

time integration: RK

3. Convergence
Acceleration:

variable time step

residual smoothing

artificial dissipation

multigrid preconditioning

4. I/O
PLOT3D format

5. Turbulence Models
Baldwin-Lomax

II1.1_..Numerical Method

i

Current Code: cyst,e
(D.Cauahev)

1. Geometry
O- R-meshes

(EAGLEView MSU)

2.PDE Solver
vadable number of PDEs

consistent gradient comp.

3. Convergence Acceleration
Enhanced multigrid sequencing

4. I/O
Restart option

Post-processing (DX,Tecpiot,...)

convergence histories

5. Turbulence Models
k-epsilon(-S)

6. Software Engineering
Dynamical mere. allocation (C)

Vectorized data structure

Unix Integration

Future

1. Geometry.
3D

2. Turbulence Models
SOC
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III.2.Turbulence Models:

Incompressible / Compressible: an additive approach

• Baldwin-Lomax

• k-Epsilon / k-Epsilon-S: B.C's

• Second-Order Closures

Boundary Conditions: Wall-Functions

III.3. Validation Procedure / Results

• Calibration against simple well-documented

flows (flat plate, jet )

• Results and Comparison of models
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[FUTURE WORKI

• _Numerics

- 2D _ 3D

- More Complex Wall Functions

- Realizability Conditions (SOC)

• Modeling

- Refinement of Existing Models (_d, < pd >)

- Shock Oscillation Model
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Homogeneous Turbulence (R) / k-eps / Mach=0,045 Re=24357

Downstream Evolution

r

10 .5 L

10 .7

10 .9 J Dowa_c_;ea

<---.--.1 TKE

epsilon j
i

J
1

-_-___ 1

y= 2e-5 ×"I1.29)

i

]

y= (2e-5) x"(-2.33)

t
1
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Homogeneous Turbulence (R) / k-eps-S / Mach=0.045 Re=24357

Downstream Evolution

10"s

10`7

10"g

-c-_c1TKE

epsilon
_---> s

y= (2e-4) x^(-1.24)

y=(2e-5) x^(-2.41)

Homogeneous Turbulence (R) / RSC / Mach=0.5

Downstream Evolution

10-s

10.7

10"_

<t----_ epsilon
_F----_' uu
D,-----> w
_ww

y= (0.3e-3) x^(-1.28)

y= (0.2e-4) x^(-2.33)

De;:nraream-L-_......
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MODELING OF TURBULENT CHEMICAL REACTION

J.-Y. Chen

Department of Mechanical Engineering

University of California, Berkeley

Berkeley, California

N95- 27899

Physical
Process

Mathematical
Model

Analysis

Simulation

Design

Modeling Turbulent Reacting Flows

Model for 1Turbulent Flows

Model for Effects of ]Turbulence on Chemical|
Reactions J

t
Model for

Chemical Kinetics 1
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Regimes of Turbulent Combustion

108

D_

TURBULENCE / _//

\. / Io_ / /-

G/_ -i_ ./'_

i_z /'\\ REACTION
k0" // _SHEETS_//

,,.,--Tyrol2\ /- "../ /

,_o,-c, × _.,D_',,,,,Xl I

DISTRIBUTED--_ /"
REACTIONS _ /

Y xx,,_,/

to_ io_
R_

Turbulent Rea¢live FIows edited by P A LJbby and F,A Williams (1994)

Regimes of Premixed Turbulent

Combustion

reactor ._ Da > 1, Ka_ I

Da<l _ Ka_..._ °'q=" t)

/ distribute.d reaction /

/ zones_ Ka<t.

Re-I /_ CO_?<. l)

."x_ _ed flamelets

: log (i,/l:)

/

/(_= _/ P, 7

Turbulent Reactive Flows edited by PA Libby and FA. Williams (1994)
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Regimes of Non-Premixed Turbulent

Combustion

Iog(Z')

(_Z)e.

I -._

*_ Flamelc[ Regime

Reaction _ "'_
Zones _ "_ N

-"--._ ..

Connected Reaction Zones

log (tk /

Tudoulcm Reactive Flows edited by P A. Libby and F.A. Williams (1994)

Chemical Closure Models

(1) Laminar Chemistry

< PWi >= PWi (Yi, T)

(2) Fast Chemistry

1 _~ 02y_ (f)
< pw i >_ p_f

2 oa2f

O) Flamelet model

< Pwi >= Ifpwi (rh)_f)Pf.x, (rI,Ef)drld_f

(4) Assumed PDF:

<:pW i >= S.. f pWi (_)i)" P, dqb]d_2 .. dqbn

Assumed the shape of Pqb.

(5) Scalar PDF method:

Solve for P_ directly.

(6) Conditional Moment Closure (CMC)

< pw i >= I< pW; Irl >. Pr (rl)drl
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Flamelet library with one side being burned premixed flame_=1.4

Tcopy

2100

1950

1800

1650

15OO

1350

1200

1050

9OO

75O

6OO

450

3O0

Flamelet Model: 69%H2+31%CH4

Turbulent Jet Flame. R_O00

2000-

1000-

o x_=23,, 80

_ Pre_ctlon, Fl_nele)
)"i_...::_ .... F're_dion,Equilibrium

-.......
%'%% 0

.........
0 o

i i i i

o.o o.1 or. o.3 0.4 o.s
_x4ure Frodion

Vra#,os, e_ al. "Nitric Oxidc Formation and Differential Diffusion in a Turbulent Mctha.nc-

Hydrogen Diff_asionFlamc," 24th Symposium(Intcmadonnl) on Combusdon/Thc Combusuon

[nstitutC, 199Z/pp 377-384
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Elamelet Model: 69%H2+31%CH4

Turbul_______eentJet Flame, Rev.=10,00O

0.08

.8

0.06,

0.04-

0.02-

0.10-
/

/ o x/'a : 23
." a x/a= 40

/-"""_"..,, V'o=80
//...".........._".. -- _r_t.Fk_n_e,
!.",." ""::-.... _'_, _'_i_um
:i- _ ..
:" : 4 ".

L:74a _a "..
_.; n O

0 0 "%

_%°%..

0.00 -

0.0 0.1
O.2 0_3 0.4
IM_ure Fmcfion

o.5

Vr-e._. _ al '3/imc Oxi/: l:orr_lio, ell l:)ifl'crc._al Diffusion in a Turbul_._t-Melhanc-

Hydrog_ DiffUsion Flamc." 24th Syraposiunl(L_crr_lio_a/) on Combust,on/Thc Cc_b_s_onInstitute, 199_Jpp 377-384

O.

Flamelet Model: 69%H2+31%CH4

Turbulent Jet Flame, Rey.=l 0.000-

(D

X

(-

O
Z

Vnanos. el al "Nitric O:_de Formation and DiffercnlialDiffusion in a Turbulcnt McJ',a_c-
Hvdro_cn

. Diffusion Flame" 24th SYmPosium([ntcmllional) on Combusdon/Thc Combustion
InsCilu{c.I_2d'pp 377-384
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Advanced Flamelet Ap_

l.xr.ld models

_ple_ kinetk_ I_aitioa or flame

stabilization subraodets

mm_Cal flamelet

[Re.a_ioaraw.s,

_x6actioa .].Lacal _on

_ E_{JvC _ Heat rtlease

"_'--_ Turbulent flow de._iptlon ] _._.__.--l,]

closure ral_ 1

Globalmodel

Conditional Moment Closure (CMC)

Definition:

< Y_ Irl >=< Y (g, t)lf(g,t) = rl >

Equation:

V-{< pu'y'lrl > Pf (rl)}
_<Y. Irl>+

<plrl>- , • <pfilaq>.V<Y 1"1>4
_t Pf (rl)

2 2 < Y, Irl >

=< pwilrl > + < pDiVfVflrl > _grl:

Modeling:

< wilt I >= wi(< Tlrl >,< Yilrl >,..)

1_

< pDiVf- Vflrl >=< pD,Vf-Vf >= _PZf

< pfilrl >= pu

< pu'y'l rl >= 0

< pit I >= 19(< Y_lrl >,< Tlrl >)
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Conditional Moment Closure (CMC)
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Conditional Moment Closure (CMC)

Applications:

• Incorporated into existing moment

closure CFD codes for complex

geometry flows

• Realistic Chemistry - Detailed or

reduced

Research issues:

• Modeling of conditional statistics

• Preferential diffusion

• Parallel computing algorithms

probability Density, Function (PDF)

Applications:

• NOx from methane jet flames with

reduced chemistry

• Sooting flames

• 2-D flows

Research Topics:

• Mixing model

• Extension to droplet spray & particle

laden flows

• Preferential diffusion

• Efficient stochastic algorithm

• Construction of chemical tables

• Parallel computing - 3D Flows or 2D

flows with complex chemistry
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Departures From Chemical Equilibrium

(Exp.)('_) Hydrogen

Lo

Methane
zl_o.o

2000+0.

• _ _+'+++"+

o+i "_
l

Io.0 o= a4 oo ol

_xluro F+aet_on. f * o

" _ ,soo.o ; +'+" I ++_.+ .+_. +

o.o o= 04 o6 ol
;_lture F_actioa f i o
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=,oo1

,++_f" +"_-

o

o o." _ 08 08

",_,xture Practlon

:t400

+

2000-

• !

O= o4 06 o+

Mixture F_actlon
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Mixing Models for PDF Methods

- Modified Curl's Model (stochastic)

(z=l,I]=l dWa°_[_ [\ p I • }

"tm/x t_'_' L _ m J

- IEM (jnteraction-by-Exchange-with-the-Mean) Model

(deterministic)

C
fit

Mixing Frequency: COmzx =/_m/x

Mollfle<l CUd'S Model

O_kAil _ llli=li_i

lll,i_ m

PaSR: H2/NOx Detailed Chemistry ¢=1 T=I ms

o
Z

1.Oxl0 "4-

0.8x10 _

0.6x10"

0.4x10 -4

0.2x10"

o
o

o

o

o

modified Curl's modet
tom mixing model

i
I3

It

0 OA

• II

0.2 0.3

Unmixedness
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Comparison of Predicted and Measured
H20 Mass Fractions

Turbulent Nonpremixed Jet Flames

Fuel: (CO/H2/N2:0.30/0.10/0.6 )

_'- l_easu rement

YH2o_ ..... /'% -t
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PDF Modeling / -_

oos- / \
/ \

o.o. _ \\

o / \
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Mixture Fraction. f

Experimental Evidence of Preferential Diffusion

in Turbulent Jet Flames

(Fuel: 36%H.,+64% CO:)

Re_=2,000

C Mixl#e Fracli,,n

,_.=,.ooo ".

[" K|ixtur¢ Fr;,_tl,,n
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0.5
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t] [}5
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"DifferemiM Molecular Diffusion in Reacting and Nonreactin_ Turbulent Jets of H2/CO2

mixing with Air," L L.Smhh Ph D Thesis. University of Cadi,Eornia at Berkeley (1994)

229



_Computation of Turbulent Reactin,q Flows

1

Laminar Flames with |

Detailed Mechanisms 1
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INTRODUCTIONTO TURBULENCE SUBPROGRAM

T.-H. Shih and J. Zhu

Institute for Computational Mechanics in Propulsion
and Center for Modeling of Turbulence and Transition

NASA Lewis Research Center

Cleveland, Ohio

OBJECTIVES

• A means for CMOTT to interact with industry

• A vehicle for technology transfer to industry

CONCEPT OF TURBULENCE MODULE

• Exact CFD equations:

DpU, c9 _ OU_ cgUj 2 OUt 5ij) - p_] OP

• Reynolds stresses will be recasted as:

-;_,_j -=_r(°ui ouj 2 ou_ _,j) + [-p_- , ou, ouj
Oxj _ Oxi 30xk /_r(-_x j -_

k 2 _ ' OXi

#T -= Ct,__ --_
¢

J_j

20U_ .

CFD equations become:

DpU, 0 OUi OUj
Dt OxJ [(# + ttr)(-_xj + (gxi 20Uk 5,_ )] cgTij OP

3 + o --7-

The task of turbulence module: Provide _r and T,_
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Turbulence Module:

Input: u_, p and _... from the mean flow solver

Output:

k2 Dk De _ ]_=G- [_ .... ' D_....
E

•Ou_ ouj 2ou_,
T_ = -p_--_ - ,_(-_j + _ - _Yd[_ j'

o Models for p

- One- and two-equation eddy viscosity models

- Reynolds stress algebraic equation models

- Reynolds stress transport equation models

Mean Flow Solver

Turbulence

module

I Solution __
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Module with CMOTT research code (incompressible)

• CFD equations in CMOTT research code:

DpU, O OU_ OUj ). _z/ OPmt - Ozj [(# + _T)(_-_xj + _ J + T,j• _2 i

• Turbulence module: provide _T and T,j

<>Built-in models without wall function:

Launder-Sharma and Chien k - _ models

CMOTT k _ model

<> Built in models with wall function:

k _ model, standard k- c model

CMOTT k - _ model

CMOTT Reynolds stress algebraic equation model

Module with NPARC code

• CFD equations in NPARC code:

Dt ox i -' cOxi

• Turbulence module (present time): provide isotropic zr

<> Build-in models without wall function:

Baldwin-Lomax model and Chien k - _ model

CMOTT k - _ model

¢ Further development:

Models with wall function

Reynolds stress algebraic equation models

Reynolds stress transport equation models
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Joint Program with Industry

on Turbulence Module

• For those who want to use the available modules:

o Need interface program for particular industry codes

- Grid informations, Boundary treatment,...

• For those who want a module for their own codes:

<> Need modules exclusively for particular industry codes

• Maintain and update the turbulence modules along with

model development.
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DESCRIPTIONOFTURBULENCESUB-PROGRAM

J.Zhu
Institutefor ComputationalMechanicsin Propulsion

NASALewisResearchCenter
Cleveland,Ohio

General Transport Equations

_(rJ-lP4) + _/(C/_b- Di(a) = r J-is4 J

• Non-dimensional form (#,

• Conservative form

#t ¢¢> #/R.e, l-Zt/Re)

Cartesian velocity components

1. Easy to transform (chain rule)

2. No curvature terms
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Discretization

• Finite-volume method

• Source term

S_ -- Sl -{-S2q_,

• Transient term

S 1 >_ 0 and $2 <_ 0

1. lst-order fully implicit scheme

2. 2nd-order three-level fully implicit scheme

Diffusion term

Standard central differencing scheme

• Convection term HLPA scheme

(Hybrid Linear/Parabolic Approximation)

Cw - Cww
_ = _w + "_(¢c - _w)_w, _w = _c - _ww

i_: 0

if I_w- o.sl < o.s
otherwise

_ Second-order accurate

- Bounded (non-oscillatory)

- Diagonally dominant matrix

_NN

ON

WW
S

is

,ss

&
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Exa mple i

S

2-

1
0

t=0

r=,

10 30

Irlitial profile at t = 0

2

S

2

S

1

80

NYBRIO OUICK SOUCUP HLPA SMART

,L
80 '80' 80 80 x 80 _60

Predicted profiles at t = 100 (201x2 grid, A_ = 0.4)

80 80 80 x 80 160

Predictedprofilesatt= 100(1001x2 grid,A( = 0,i)

Exa m pie 2

_.0 I S.I . S=$ r 0=tlel

-" o_ . i
-_0 -05 00 _ 35 10

_YeRI_ _LJtCK "_LPA SH,_RP Sw_,_?

(b) 100xSOCV

'_i eM'e.RI_ _ ,.._u_ K : _.iL:Jl : SH:RP :: _MCRTY7•

C 0 0 x 0 ; 1

(a) 20x 10CV

S-profiles al oullet (C, exact solution),

SMART

orthographic projccllon oi S-field.
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Solution Procedure

Non-delta form

Positiveness (¢ >__0

Simple linearization

but A¢

Algebraic equations

Ac¢c = AwCw + AE.d)E JF

A's, S > 0

may < O)

AsCs 4- AN¢._ 4- S

• Decoupled solution

• Alternating direction TDMA solver

Boundary Conditions

• Inflow" ¢ specified

• Outflow: Fully-developed condition

• Symmetry: co¢/On = 0

Wall

1. Low-Reynolds number turbulence models

2. Standard wall-function approach
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Sub-Programs

• NPARC2D version

Plane or axisymmetric, without swirling

Compressible

Non-vectorized

• FAST2D version

Plane or axisymmetric, with or without swirling

Incompressible

Vectorized

NPARC2D Version

• Grid arrangement

Control volume centers

Boundary nodes

Embedded bodies

9

7

5

t3
K

1

r i i ;

1 ; J

I 4 7 10 _3 _5

j .-+

JV//7////////A

"--_17////////,.71

J-Patches K-Patches
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• Input from the main code

1. Geometric quantities: x, y, _=, 4_y, r/m, r/y: J

2. Flow variables: /_, j-lp, j-lpU _ J-lpy: J-1E

3. Patch control: 5 x 2 parameters

4. Boundary conditions: 7x2 parameters

. Output

1. To the main code:

2. For post-processing: K, e, y+, yn, f_

FAST2D Version

• Grid arrangement J B8 B9 B10 B11
\

CV centers _ ,j- , ;[: .i;:',.1\ ;/_,I.i.

B1--_0. .f.i.l.t._.i'ki.q:/!.i.l_"612Boundary nodes _. i" i', .i_N___L

.1 .I .i.t ..'.._ ._. _.t_t .t •
Embedded bodies e :i;_-._.t. .i.i' -!:i_.l-!: _B7

• t .t.1.1..i;_._.1.1.,_.!:

_,_' ,. I. _%___

/I \\ , \ _ \
/ \
I

613 514. B15

240



• Vectorization

Single-index:

ii--i+(j-1)ni

¢(ij)----¢(ii)

¢(i+1,j)=¢(ii+1)

¢(ij-1)=¢(ii-ni)

Control parameter:

J

!
(i,j) 0+1,j)

(i,j-1)

KBLK -- { 10
for computational nodes
otherwise

¢=KBLK.¢c+(1-KBLK)¢b

• Input from the main code

1. Geometric quantities x, y, x¢, xn, 9{, Yv, J

2. Flow variables: #, p, G, V, W, Cw, Cs

3. Vectorization parameters

4. Boundary parameters

• Output

1. To the main code:

2. For post-processing"

/_t, T/j

K, e, y+, Yn, f_
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OVERVIEW OF PROBABILITY DENSITY FUNCTION (PDF) MODELING AT LeRC

D.R. Reddy
Internal Fluid Mechanics Division

NASA Lewis Research Center

Cleveland, Ohio

OBJECTIVE

Accurately model the effect of turbulence on

chemical reactions in a fluid flow

APPROACH

Use Probability Density Function (PDF) model -

Express dependent variables as functions

representing statistically realizable events

POSSIBLE MODELING STRATEGIES

1. Evolution PDF - solve for function

a. Joint PDF for velocities and chemical species

b. Joint PDF for only chemical species

& energy

2. Assumed PDF - function prescribed

Limited range of applicability-

reaction time < < or > > turbulence time scale
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CURRENT APPROACH

• Develop evolution PDF model for compressible

reacting flows & extend to spray combustion

• Solve for joint PDF for species and energy

using Monte-Carlo technique

• Couple with conventional CFD codes

AREAS OF IMPACT

• NOx Prediction - HSCT and AST application

• Spray combustion - swirling turb. reacting flows

• Scramjet flow path analysis

• Ignition kinetics - prediction of blow-off, etc.

• Combustion instability studies
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CODE FEATURES

• Modular - can be coupled with any CFD code

• Applicable for compressible flows with

discontinuities

• Monte-Carlo solver for generalized curvUinear

coordinate system

• Easily adaptable for parallel computation

(currently under progress)

CURRENT STATUS

• 2-D and axisymmetric version released

(default H2-air chemistry - 5 species)

- parallel version to be released

• 3-D version demonstrated for supersonic

combustion (jet in cross flow)

- validation planned for HSCT-type configurations

• General chemistry (CHEMKIN)

- Hydrocarbon spray combustion case currently

under study

• CFD codes used - RPLUS, ALLSPD, & SIMPLE-type

245



FUTURE PLANS

• Further application/validation of 3-D model

Improved closure models - mixing and turbulence

(use available DNS data)

• Parallel processing - workstation clusters

• Unsteady applications - long-term

• Extend scope of impact
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PDF METHODS FOR TURBULENT REACTIVE FLOWS

Andrew T. Hsu

NYMA, Inc.

NASA Lewis Research Center

Brook Park, Ohio

N95- 27900

OUTLINE

Motivation

PDF modeling of reactive flows

The Lewis PDF module

Validations and applications
Cu rren t researcln

Technology transfer

COMPUTATION OF TURBULENT COMBUSTION

C'o;lVe,atibni,iI
::Model::i::t

i
i

I
I
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GOVERNING EQUATIONS

p, + (pu_) i = 0

(p,,&,+ (p_j=,)j = -p_ + r,,,,
(pE), + (pujE)j = -qi,_ + 'I'

(pYk)., + (pujYk).j = (pDY<i)j + wt.

_CLOSUIiE PIIOBLENI:

l

_q=Y+ Y/,

ILi 1_..i

i .i

fl'w i

-- Turbulence Modeling

-- Analogy of shear stress: difhts ion :-nodel.

979

But in genera!:

pwi = pw(lq,...,Y;,,,T )

v_ #/;_,,_,..-,<, T )
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PDF Modeling of%\Irbulent Reactive Flows

Current status

• Assumed PDF (Spalding_ 1971; Gosman 6_ Lockwook,
1973; ...)

<> Advantage: ,simple, fast.

<> Disadvantages: Need unique mixture fraction; assumed
shape may not be real.

• Composition PDF (Pope, 1976; Dopazo &: O']3rian,
i9z4)

o Advantage: Reaction rate treated exactly; existing mo-
ment closure codes easily adaptecL.

o Disadvantages: Turbuler:t diffusion needs model.

• \ elocity-Compositionjoint PDF (Pope _ Chen 1980,
Pope 1981)

0 Advantage: !leaction rate treated exact]y; no df[usion
model needed.

o Disadvantages: Models for velocity field relatively un-
Lded; R.equlre more computer resource.

PDF _Iocleling of %ktrbulent l-ieactive Flows

• Objective:

0 Develop models that can accurately simulate _nite rate
chemical reactions in turbulent flows.

o Develol:) and validate independent PDF modules.

<> Technology transfer.

• Criteria

o Accuracy and robustness.

o Practical in terms of today's computing power.

o Easy integration with existing industry computational
platfbrm.
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PDF 5dodeling of Turbulent Reactive Flows

Approach:

<> Joint pdf method forscalar compositions.

<> Moment closure schemes for velocity field.

O Develop hybrid solver consisting of Monte Carlo method
and finite-difference/finite-volumemethod.

PDF Modeling of Turbulent IKeactive Flows

• Current status (Lewis)

(pP)., + (p < ujlY,., J_ > P).j +(pwjP),:;

= (Z),P:j),j + M(P) - (,%,P).,:.

o Continuous mixing model developed.

o iviodel for compressibility effect proposed.

o 2D and 3D Monte Carlo PDF module developed.

o Validation studies.

0 Code rclc;_sccl I c_ il_dl_stry during a workshol_.
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Validation Cases

• Scalar field in homogeneous turbulence.

• Oblique shock.

• 2]D supersonic hydrogen combustor.

• __kxisymmetric supersonic combustor.

• Piloted flame near extinction.
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Scalar field in homogenous turbulence

pdf compared with Oaussfan distribution
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Temperature acrossan obliqueshock:

pdf solutioncompared with analytica]

prediction.
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Supersonic hydrogen con_.busto:

Mole fraction:

pdf solution compared with ex_. data

i.O

C
0

0.8
0

•, 0.6
E

in
#o

Zo.2
(3-

01

0.0

0.0

o _2

o 02
o N2

- _ o ;'20

_"_o -- Compute_

• ._.....__..___

_.0 2.0 3.0 - 0

¥ (c,_)

Coaxial burner.- geometry and test condition

(V,xp. Cheng, et al. 1991)

_. _v°it_ _,

254



Mean H20 moI¢ flaction

Coaxial burner

pdf solution compared with exp. da:a
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Piloted Flame

Mean Temperatnrc
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Current Projects

O Application of PDF module to emission predictions

o Incorporate general chemistry procedure.

o Incorporate spray models.

o Use parallel computing for the PDF module.

Collaboration with industry and

technology _ransfer

• Features of independent pdfmodule:

o Easily coupled with any existing industry flow codes

o Novel averaging scheme to reduce memory requiement.

o General chemistry pachage.

o Parallelized worhstation version.

• Technology transfer: workshops

o July, 1993; code released to !5 US institutions.

o October, i994.
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A COMPOSITION JOINT PDF METHOD FOR THE MODELING OF SPRAY FLAMES

M.S. Raju N95- 27901
Nyma, Inc.

NASA Lewis Research Center

Cleveland, Ohio

INTRODUCTION

O THE COMPOSITION JOINT PDF METHOD HAS
BEEN USED TO MODEL A WIDE CLASS OF
GASEOUS TURBULENT REACTIVE FLOWS.
(S.B. POPE)

NONLINEAR CHEMICAL REACTION RATES
COULD BE EVALUATED WITHOUT ANY
APPROXIMATION.

AN EXTENSION OF THE PDF METHOD TO THE
MODELING OF SPRAY FLAMES.

EVALUATE THE LIMITATIONS AND
CAPABILITIES OF THIS METHOD .IN THE
MODELING OF GAS- TURBINE COMBUSTOR
FLOWS.

Composition 3oint Pdf Transport Equation

_#.,+ _n_#._,+ [_°(_].,° =

{Mean convection} {Chemical reaetiona}

-[,_ < '-'; 12 > P].=,- [,_< _ ,.,, I ¢ > P].÷.

{Turbt,len_ convection} {_olecular mizing}

-[_ < _SoI __> _],,.

{Liquid - phase ezchange}

/_ = Density-weighted joint l_df.
wo = chemicalsource term for the a-th

composition variable.
< t,_' 1¢ > = conditional average of Favre velocity

fluctuations.

< 1jo I ¢ > = conditional average of sealax dissipation.

< is° I ¢ > = conditional average of llquid-phase source

term for the a-th composition variable.
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Modeling Aspects of the Pdf Transport Equation

I!< ui [ ¢_.> is modeled using a gradient-diffusion model.

1 .It, --< ; i._ I ¢ > is modeled using a variant of Curl's model.

The new term < ! I¢_ > involving the conditional averagep$a

of liquid-phase source term is modeled based on the average

values of species and enthalpy:

1 1
< -_o 1¢ >= E"_'_(¢" - ¢=)

for ¢o=:t_,a=l,2 ..... s=_-I

1 1
< -So I ¢ >= _,_km_(--Ik,,ff + hk, - ¢,,)

p -- _-_

for ¢_ = h.

MODELING ASPECTS

THE MODELED PDF TRANSPORT EQUATION
PROVIDES THE SOLUTION FOR THE SPECIES
AND TEMPERATURE FIELDS WITH THE MEAN
VELOCITY AND THE TURBULENT
DIFFUSIVlTY AND FREQUENCY PROVIDED AS
INPUTS FROM THE CFD SOLVER AND THE
SPRAY SOURCE TERMS FROM THE
LIQUID-PHASE SOLVER.

THE MEAN FLOW AND TURBULENCE
EQUATIONS ARE SOLVED BY A
CONVENTIONAL CFD SOLVER WITH THE
MEAN SPECIES AND TEMPERATURE FIELDS
PROVIDED AS INPUTS FROM THE PDF
SOLVER AND THE SPRAY SOURCE TERMS
FROM THE LIQUID-PHASE SOLVER.

THE LIQUID-PHASE EQUATIONS ARE
FORMULATED IN LAGRANGIAN
COORDINATES WITH APPROPRIATE
CONSIDERATION TAKEN INTO ACCOUNT OF
THE EXCHANGES OF MASS, MOMENTUM,
AND ENERGY BETWEEN THE TWO PHASES.
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NUMERICAL METHOD

• Mean-Flow and Turbulence Equations

- Axisymmetric, Unsteady.

- Incompressible Navier-Stokes (Variable-Density).

- A Standard Two-Equation k-_ Turbulence Model.

- A Pressure-Based CFD Solver Based on the
SIMPLE Algorithm of Patankar and Spalding.

• Liquid-phase Equations

- The Spray Model (Raju and Sirignano).

- Dilute Spray Assumption.

- The ODE's for the Particle Size, Velocity, and
Location are Solved Using a R-K Method.

- The PDE's for the Internal Droplet Distribution
(Vortex Model) are Solved by an Implicit Method.

- Droplet Regression Rate is Based on Either a
Gas-Phase Boundary Layer-Analysis or
Low-Reynolds Correlation.

NUMERICAL METHOD

• The PDF Transport Equation

- A Fractional Step Monte-Carlo Method (Pope).

- Spatial Transport, Molecular Mixing, Liquid-Phase
Source Terms, and Chemical Kinetics are
advanced in a Series of Sequential Steps.

- Vectorization

• Interaction Between the Two Phases

Interpolation of the Gas-Phase Properties at the
Particle Location Using an Area-Weighted
Averaging.

The Source Terms Evaluated at the Particle

Location are redistributed among the surrounding
Computational Nodes Using an Area-Weighted
Averaging.
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CHEMICAL KINETICS MODEL

• IT IS BASED ON A SINGLE STEP GLOBAL
MECHANISM OF WESTBROOK AND DRYER
FOR N-DECANE/OXYGEN COMBUSTION.

• THIS GLOBAL COMBUSTION MECHANISM
WAS SHOWN TO PROVIDE ADEQUATE
REPRESENTATION OF TEMPERATURE
HISTORIES IN FLOWS NOT DOMINATED BY
LONG IGNITION DELAY TIMES.

Geometry of the combustion chamber.
(El Banhawy and Whitelaw)
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EXPERIMENTAL DETAILS

• The experimental data corresponds to
the following inflow conditions:

inflow temperature = 310 K,

air mass flow rate = 355 kg/h,
air/fuel ratio =20.17,

swirl vane angle = 45 deg,
swirl number =0.721.

• The reported error in the

measurements is about 10 to 15 % for
the temperature and about 15% for the

velocity.

Details of Fuel Injection

• A fuel nozzle of swirl-atomization type was used.

• The liquid fuel injection is simulated by injecting
a discretized parcel of liquid mass at the end of
each A tinje_ion

• The droplet-size distribution is given by:

= rdn 4.21 106 LD-_z2J D32

22 . . ,,,_ . .

20 _ _ I_aber / t.O

1, / _ --H .... ' -' _

Ills II

8 14 .7 .L

12 - .6 s5"0

".. is Js e

+i -'*_

i .2 g.I --I

Droplot did.meter, microns

Droplet size Distribution

The initia[ droplet injection velocity corresponds
to: uk = 11.0 m/s, wk = 6.1, and vk = 0.5 - 2.5.
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PARAM ETER SELECTIONS

• The computations were performed on
a grid with a mesh size of 60x60.

• The PDF solution is obtained by
making use of 250 particles per cell.

• Dtg = Dtinjectio n = 1.5 ms, Dt k =

0.0375 ms, and DtMonte_Carl o =
0.015 ms.

• Two CPU seconds on a CRAY Y-MP

per one Dtg and about 2 to 3 CPU

hours - 4000 time steps - for the

solution to reach steady state.

Velocity veclor plot.

Temperature contours and droplel locations.
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CONCLUDING REMARKS

The comparisons show that the general features of
the flowfield are correctly predicted by the present
solution procedure.

The present solution appears to provide a better
representation of the temperature field, particularly, in
the reverse-velocity zone.

The overpredictions in the centerline velocity could be
attributed to the following reasons:

The use of k-s turbulence model is known to be less

precise in highly swirling flows.

The swirl number used here is reported to be
estimated rather than measured,
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IMPROVEMENTS AND NEW FEATURES IN THE PDF MODULE

A.T. Norris

Institute for Computational Mechanics in Propulsion
NASA Lewis Research Center

Cleveland, Ohio

N95- 27902

Overview

• Modeling: What models are used in this Package and what

are their advantages and disadvantages.

• Numerics: Describe how the PDF model is implemented

and what are the features of the program.

• Future Developments: What can be expected in the future

from the NASA Lewis PDF code.
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PDF Modeled Equations.

• Exact scalar PDF transport equation is:

s_2__(aJ?
Oxi - a¢_ • -

0 Oq_ 0 Dp

+ _-_(<-_-[xilC__,n)P)+-b-_v(<-b-[l£,v>P)
(1)

• Terms on the LHS exact - need to model the four terms

on RHS, corresponding to turbulent convection, molecular

mixing and the pressure term.

Turbulent Convection

• This term is modeled as a simple gradient diffusion process.

aP (2)

• Dt is the turbulent diffusion coefficient, equal to the eddy

viscosity. (Assume unity Schmidt)

• Disadvantage: Counter-gradient diffusion known to occur

in some pre-mixed flames,
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Molecular Mixing.

• Molecular mixing can be viewed as process which changes

the shape of the scalar PDF without affecting the mean.

• Molecular mixing is modeled by two models; A coalescence/

dispersion model (Hsu and Chen) and a relax-to-mean model

(Dopazo).

• Advantages of both models is that they are simple and

readily adaptable to any number of scalars.

• Disadvantages are the relative lack of physics in the models.

Pressure Term.

• Pressure term model is based on second order closure mod-

els for compressible flows (eg. Sarkar).

Dp a(p) -F (Ui)__. 4- ..... O(Ui}
(D--_l¢-'r/) _ a--_- _ u'°P£_2 _x/ (3)

4- 0.15pPrMt - 0.2peM 2

• Advantages are that model is tried and tested in finite

volume codes. Disadvantage is that only the mean pressure

can be used for model. Idealy we would like a stochastic

process for two state variables.
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Numerics

• Solution of scalar PDF transport equation achieved by a

particle based Monte Carlo scheme.

• PDF represented by an ensemble of particles, each with a

composition and enthalpy.

• PDF evolves by the motion of these particles in physical,

scalar and enthalpy space, by exact and modeled processes.

eg. Convection, reaction, mixing.

• Statistics (eg.

of particles.

means) obtained by averaging over ensemble

Numerical Details- Monte Carlo Scheme

• Module based on cell-centered quantities.

• PDF method is a nodal one. ie. All particles reside at the

center of the cell, and can move only to neighboring cells.

• Number of particles at each node is the same and the

number remains fixed.

• Statistics obtained by averaging over particles at each node,

and also by time-averaging.
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Numerics- Convection

• Upwind scheme used for mean convection, and central dif-

ference for turbulent convection.

• Evolution achieved by moving particles in from adjacent

nodes. Particles are selected at random.

• Fractions of particles are treated by random convection.

if 6.3 particles then _ 6.0 70% of the time
l 7.0 30% of the time (4)

Numerics- Reaction

• Although reaction source term treated exactly, several dif-

ferent numerical schemes are needed. Timing figures are for

% of time spent in the PDF part of the code on SPARC [l

workstation.

• No reaction: For scalar mixing calculations.

(Timing: 17.2 %)

• Equilibrium reaction: Assume reaction proceeds at infinite

speed. Table of equilibrium composition as a function of

mixture fraction obtained from seperate CHEMKIN routine.

(Timing: 24.4 %)
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Numerics- Reaction Cont.

• One-step global reaction schemes. Westbrook and Dryer

global reactions integrated for each time-step.

(Timing: 51.1%)

• Tabulated reaction incriments. Users create their own table

of composition incriments as a function of scalars using the

adaptive tabulation scheme provided, plus the users favourite

reduced mechanism.

(Timing: 58.9 %)

• Chemkin full mechanism integration. Very slow and not

recomended except for parallel applications.

(Timing" 97.8 %)

Numerics- Averaging

• To reduce statistical error in the evaluation of the mean

scalar quantities (without increasing the number of particles

per node), time averaging is employed.

• A weighted time average is used to give more weight to

recient values and less to those in the far past.

(<¢))t= 1 1((¢)t _{__t((¢)}n-1)rut +

Wt = Ct(Wt--1 -Jl- 1)

(s)

(6)
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Numerics: Misc.

• A portable random number generator is now included in the

module, set up for 32 bit machines.

• A time step check is now performed to ensure boundedness

of the PDF solution, ie. no negative numbers of particles.

• Rplus/PDF release ported to workstation enviroment. K-

epsilon now standard turbulence model.

Future Work.

• Release of 3D version with new improvements.

• Implimentation of parallel processing for distributed cluster

environment. (PVM based)

• Include model for another state variable to close PDF mod-

eling.
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